分析 根據(jù)對(duì)任意實(shí)數(shù)x均有f(x)•g(x)≤0,求出a,b的關(guān)系,可求$\frac{1}{a}+\frac{4}$的最小值.
解答 解:f(x)=ax-b,g(x)=x+1,
那么:f(x)•g(x)≤0,即(ax-b)(x+1)≤0.
對(duì)任意實(shí)數(shù)x均成立,可得ax-b=0,x+1=0,
故得ab=1.
那么:$\frac{1}{a}+\frac{4}$$≥2\sqrt{\frac{4}{ab}}$=4,當(dāng)且僅當(dāng)a=$\frac{1}{2}$,b=2時(shí)取等號(hào).
故$\frac{1}{a}+\frac{4}$的最小值為4.
故答案為:4.
點(diǎn)評(píng) 本題考查了恒成立的問題的轉(zhuǎn)化以及基本不等式的性質(zhì)的運(yùn)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若p∧q為假命題,則p,q至少之一為假命題 | |
B. | 命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0” | |
C. | “若am2<bm2,則a<b”的否命題是假命題 | |
D. | “若$\overrightarrow a∥\overrightarrow c$且$\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow b$”是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充分必要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | $\frac{25}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com