【題目】已知 分別為橢圓的左、右焦點(diǎn),橢圓離心率,直線通過點(diǎn),且傾斜角是45°.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓交于兩點(diǎn),求的面積.

【答案】(1) ;(2) .

【解析】試題分析:(1)由焦點(diǎn)坐標(biāo)可得由離心率,可得,從而可得進(jìn)而可得橢圓的標(biāo)準(zhǔn)方程;(2)由點(diǎn)斜式可得直線的方程為: 代入橢圓,求出的坐標(biāo)利用兩點(diǎn)間的距離公式、點(diǎn)到直線距離公式以及三角形面積公式可得的面積.

試題解析:(1)由已知,又,

∴橢圓的標(biāo)準(zhǔn)方程是

(2)因?yàn)?/span>,

所以直線的方程為:

代入橢圓中整理得,

,

可解得,

,

點(diǎn)到直線的距離為: ,

.

【方法點(diǎn)晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點(diǎn)在軸上,還是在軸上,還是兩個(gè)坐標(biāo)軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程 ;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)滿足,當(dāng)時(shí)總有 ,若,則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

當(dāng)時(shí)求曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積;

在區(qū)間上恒成立求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是滿足下列性質(zhì)的所有函數(shù)組成的集合:對(duì)任何其中為函數(shù)的定義域),均有成立.

(1)已知函數(shù),,判斷與集合的關(guān)系,并說明理由;

(2)是否存在實(shí)數(shù),使得,屬于集合?若存在,求的取值范圍,若不存在,請(qǐng)說明理由;

(3)對(duì)于實(shí)數(shù) 表示集合中定義域?yàn)閰^(qū)間的函數(shù)的集合.

定義:已知是定義在上的函數(shù),如果存在常數(shù),對(duì)區(qū)間的任意劃分:和式恒成立,則稱上的“絕對(duì)差有界函數(shù)”,其中常數(shù)稱為的“絕對(duì)差上界”,的最小值稱為的“絕對(duì)差上確界”,符號(hào);求證:集合中的函數(shù)是“絕對(duì)差有界函數(shù)”,并求的“絕對(duì)差上確界”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品分微商在一廣場(chǎng)隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計(jì)

男性

26

24

50

女性

30

20

50

合計(jì)

56

44

100


(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈(zèng)送營養(yǎng)面膜各1份,再從抽取的這5人中再隨機(jī)抽取3人贈(zèng)送200元的護(hù)膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列和數(shù)學(xué)期望.
參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.321

3.840

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為矩形,四邊形為直角梯形,,,,,,.

(1)求證:;

(2)求證:平面;

(3)若二面角的大小為,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為2,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點(diǎn)F,連結(jié)CF并延長交AB于點(diǎn)E.
(1)求證:AE=EB;
(2)求EFFC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上有兩個(gè)零點(diǎn),求的取值范圍;

(2)設(shè),當(dāng)時(shí), ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)若,求曲線在點(diǎn)處的切線方程.

)若,求函數(shù)的單調(diào)區(qū)間.

)若,且在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案