【題目】已知是滿足下列性質(zhì)的所有函數(shù)組成的集合:對任何其中為函數(shù)的定義域),均有成立.

(1)已知函數(shù),,判斷與集合的關(guān)系,并說明理由;

(2)是否存在實數(shù),使得,屬于集合?若存在,求的取值范圍,若不存在,請說明理由;

(3)對于實數(shù) ,表示集合中定義域為區(qū)間的函數(shù)的集合.

定義:已知是定義在上的函數(shù),如果存在常數(shù)對區(qū)間的任意劃分:,和式恒成立,則稱上的“絕對差有界函數(shù)”,其中常數(shù)稱為的“絕對差上界”,的最小值稱為的“絕對差上確界”,符號求證:集合中的函數(shù)是“絕對差有界函數(shù)”,并求的“絕對差上確界”.

【答案】(1)屬于集合;(2);(3).

【解析】

(1)利用已知條件,通過任取,證明成立,說明f(x)屬于集合M.(2)若p(x)M,則有,然后可求出當時,p(x)M.(3)直接利用新定義加以證明,并求出h(x)的絕對差上確界”T的值.

(1)設(shè)

,

,

∴函數(shù)屬于集合

(2)若函數(shù),屬于集合,

則當時,恒成立,

恒成立,

恒成立

,

解得,

存在實數(shù),使得,屬于集合,且實數(shù)的取值范圍為

(3),

則對區(qū)間的任意劃分:

,

和式

,

集合中的函數(shù)絕對差有界函數(shù)”,絕對差上確界

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動,記滾動過程中頂點A的橫、縱坐標分別為,且在映射作用下的象,則下列說法中:

映射的值域是;

映射不是一個函數(shù);

映射是函數(shù),且是偶函數(shù);

映射是函數(shù),且單增區(qū)間為,

其中正確說法的序號是___________.

說明:“正三角形ABC沿x軸滾動包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點B為中心順時針旋轉(zhuǎn),當頂點C落在x軸上時,再以頂點C為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正三角形ABC可以沿x軸負方向滾動.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為直角梯形,,,,,且平面平面

(1)求證:;

(2)在線段上是否存在一點,使二面角的大小為,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系上,有一點列P0 , P1 , P2 , P3 , …,Pn1 , Pn , 設(shè)點Pk的坐標(xk , yk)(k∈N,k≤n),其中xk、yk∈Z,記△xk=xk﹣xk1 , △yk=yk﹣yk1 , 且滿足|△xk||△yk|=2(k∈N* , k≤n);
(1)已知點P0(0,1),點P1滿足△y1>△x1>0,求P1的坐標;
(2)已知點P0(0,1),△xk=1(k∈N* , k≤n),且{yk}(k∈N,k≤n)是遞增數(shù)列,點Pn在直線l:y=3x﹣8上,求n;
(3)若點P0的坐標為(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面 平面, 分別是棱長為12的正三角形, // ,四邊形為直角梯形, // , ,點的重心, 中點, .

)當時,求證: //平面

)若直線所成角為,試求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.函數(shù)fx=ex+x2+x+1gx)的圖象關(guān)于直線2x﹣y﹣3=0對稱,P,Q分別是函數(shù)fx),gx)圖象上的動點,則|PQ|的最小值為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 分別為橢圓的左、右焦點,橢圓離心率,直線通過點,且傾斜角是45°.

(1)求橢圓的標準方程;

(2)若直線與橢圓交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為.

(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;

(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.

(1)求橢圓的標準方程;

(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.

查看答案和解析>>

同步練習冊答案