【題目】已知函數(shù)

)若,求曲線在點處的切線方程.

)若,求函數(shù)的單調(diào)區(qū)間.

)若,且在區(qū)間上恒成立,求的取值范圍.

【答案】(1) (2) 單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為 (3)

【解析】試題分析:

1求出導(dǎo)函數(shù),切線方程為,化簡即得;

2求出導(dǎo)函數(shù),由不等式得增區(qū)間,由不等式得減區(qū)間;

3)題意說明,因此求出導(dǎo)函數(shù), 的零點有1,因此按的大小進行分類討論,求得的最小值,然后由可得.

試題解析:

, , ,

,

∴切線方程為

,

,則

單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

3時, 在區(qū)間恒成立,即,

,

時, , ,

恒成立.

時,即,

,

,即

時,即

,

, ,

,即 ,

,

,即,

,

不符合.

,即,

,

,即不符合,

綜上:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知 分別為橢圓的左、右焦點,橢圓離心率,直線通過點,且傾斜角是45°.

(1)求橢圓的標準方程;

(2)若直線與橢圓交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為A,B,C所對邊,a+b=4,(2﹣cosA)tan =sinA.
(1)求邊長c的值;
(2)若E為AB的中點,求線段EC的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.

(1)求橢圓的標準方程;

(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若將△ABD沿直線BD折成△A′BD,使得A′D⊥BC,則直線A′B與平面BCD所成角的正弦值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 向量 =(Sn , 1), =(2n﹣1, ),滿足條件 ,
(1)求數(shù)列{an}的通項公式,
(2)設(shè)函數(shù)f(x)=( x , 數(shù)列{bn}滿足條件b1=1,f(bn+1)=
①求數(shù)列{bn}的通項公式,
②設(shè)cn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點是坐標原點,焦點軸的正半軸上,過焦點且斜率為的直線與拋物線交于兩點,且滿足.

1)求拋物線的方程;

(2)已知為拋物線上一點,若點位于軸下方且的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來城市共享單車的投放在我國各地迅猛發(fā)展,共享單車為人們出行提供了很大的便利,但也給城市的管理帶來了一些困難,現(xiàn)某城市為了解人們對共享單車投放的認可度,對年齡段的人群隨機抽取人進行了一次你是否贊成投放共享單車的問卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組號

分組

贊成投放的人數(shù)

贊成投放的人數(shù)占本組的頻率

第一組

第二組

第三組

第四組

第五組

第六組

)求, , 的值.

)在第四、五、六組贊成投放共享單車的人中,用分層抽樣的方法抽取人參加共享單車騎車體驗活動,求第四、五、六組應(yīng)分別抽取的人數(shù).

)在()中抽取的人中隨機選派人作為領(lǐng)隊,求所選派的人中第五組至少有一人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.

查看答案和解析>>

同步練習冊答案