已知拋物線y2=2px(p>0)的一條焦點弦AB被焦點F分成m、n兩部分,求證:為定值,本題若推廣到橢圓、雙曲線,你能得到什么結(jié)論?

解析:(1)當AB⊥x軸時,m=n=p,

=.

(2)當AB不垂直于x軸時,設(shè)AB:y=k(x-),

A(x1,y1),B(x2,y2),|AF|=m,|BF|=n,

∴m=+x1,n=+x2.

將AB方程代入拋物線方程,得

k2x2-(k2p+2p)x+=0,

=

=.

本題若推廣到橢圓,則有=(e是橢圓的離心率);若推廣到雙曲線,則要求弦AB與雙曲線交于同一支,此時,同樣有=(e為雙曲線的離心率).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,準線為l.
(1)求拋物線上任意一點Q到定點N(2p,0)的最近距離;
(2)過點F作一直線與拋物線相交于A,B兩點,并在準線l上任取一點M,當M不在x軸上時,證明:
kMA+kMBkMF
是一個定值,并求出這個值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過點M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點.求證:直線AB經(jīng)過點M的充要條件是OA⊥OB,其中O是坐標原點.

查看答案和解析>>

同步練習冊答案