已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l.
(1)求拋物線上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過(guò)點(diǎn)F作一直線與拋物線相交于A,B兩點(diǎn),并在準(zhǔn)線l上任取一點(diǎn)M,當(dāng)M不在x軸上時(shí),證明:
kMA+kMBkMF
是一個(gè)定值,并求出這個(gè)值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)
分析:(1)可以設(shè)出點(diǎn)Q坐標(biāo),用Q點(diǎn)坐標(biāo)表示|QN|,再利用二次函數(shù)求最值即可.
(2)因?yàn)檫^(guò)點(diǎn)F作一直線與拋物線相交于A,B兩點(diǎn),可設(shè)出直線方程的點(diǎn)斜式,代入拋物線方程,消x,得到y(tǒng)2-2pmy-p2=0,求兩根之和,兩根之積,這樣,就可以用A,B含k的式子表示
kMA+kMB
kMF
,再消掉k,即可得結(jié)果,為一定值.
解答:解:(1)設(shè)點(diǎn)Q(x,y),則|QN|2=(x-2p)2+y2=(x-p)2+3p2
當(dāng)x=p時(shí),|QN|min=
3
p

(2)由條件設(shè)直線AB:x=my+
p
2
代入y2=2px
得y2-2pmy-p2=0,
設(shè)A(x1,y1), B(x2y2), M(-
p
2
,y0)

y1+y2=2pm,  y1y2=-p2,  x1+x2=2pm2+p,  x1x2=
p2
4
kMA+kMB=
y1-y0
x1+
p
2
+
y2-y0
x2+
p
2
=
(x2+
p
2
)(y1-y0)+(x1+
p
2
)(y2-y0)
x1x2+
p
2
(x1+x2)+
p2
4
=
y1(my2+
p
2
+
p
2
)+y2(my1+p)-y0(x1+x2+p)
x1x2+
p
2
(x1+x2)+
p2
4
=
2my1y2+p(y1+y2)-y0(x1+x2+p)
x1x2+
p
2
(x1+x2)+
p2
4
=-
2y0
p

kMF=-
y0
p
所以
kMA+kMB
kMF
為定值2.
點(diǎn)評(píng):本題考查了只限于圓錐曲線的位置關(guān)系的判斷,做題時(shí)應(yīng)該認(rèn)真分析,找到突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過(guò)點(diǎn)M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點(diǎn).求證:直線AB經(jīng)過(guò)點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案