【題目】如圖所示,一隧道內(nèi)設雙行線公路,其截面由一個長方形和拋物線構(gòu)成.為保證安全,要求行使車輛頂部(設為平頂)與隧道頂部在豎直方向上的高度之差至少要有0.5米.若行車道總寬度AB為6米,則車輛通過隧道的限制高度是______米(精確到0.1米)

【答案】32

【解析】

根據(jù)題意可以建立適當?shù)钠矫嬷苯亲鴺讼担瑥亩梢缘玫綊佄锞的解析式,然后根據(jù)要求行駛車輛頂部(設為平頂)與隧道頂部在豎直方向上高度之差至少要有0.5m,可以得到當x=-3時,求出相應的y值,此時汽車的頂部離隧道的頂部距離至少是0.5m,從而可以求得車輛經(jīng)過隧道時的限制高度是多少米.

取拋物線的頂點為原點,對稱軸為y軸,建立直角坐標系,c(4,-4),

設拋物線方程x2=-2pyp>0),將點C代入拋物線方程得p=2,

拋物線方程為x2=-4y,行車道總寬度AB=6m,

x=3代入拋物線方程,y=-2.25m,

限度為

則車輛通過隧道的限制高度是3.2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,

(1)求證:cos2+cos2=1;

(2)若cos(+A)sin(π+B)tan(C﹣π)<0,求證:ABC為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[4050),[5060),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解該校多媒體教學普及情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該校50名教師,他們的年齡頻數(shù)及使用多媒體教學情況的人數(shù)分布如下表:

(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認為以40歲為分界點對是否經(jīng)常使用多媒體教學有差異?

附:.

(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用多媒體的教師中選出6人,再從這6人中隨機抽取2人,求這2人中至少有1人年齡在30-39歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求的取值范圍;

(2)證明:不等式對于正整數(shù)恒成立,其中為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學團委組織了紀念抗日戰(zhàn)爭勝利73周年的知識競賽,從參加競賽的學生中抽出60名學生,將其成績(均為整數(shù))分成六段,,,后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:

1)求第四組的頻率,并補全這個頻率分布直方圖;

2)估計這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,函數(shù)恰有兩個不同的零點,求實數(shù)的值;

2)當時,

若對于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),g(x)=-x2+2bx-4,若對任意的x1∈(0,2),任意的x2∈[1,2],不等式f(x1)≥g(x2)恒成立,則實數(shù)b的取值范圍是(  )

A. B. (1,+∞)

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的極坐標方程為ρ2.

(1)若以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,求曲線C的直角坐標方程;

(2)P(x,y)是曲線C上的一個動點,求3x4y的最大值.

查看答案和解析>>

同步練習冊答案