【題目】已知向量 =(cosx,cosx), =(sinx,﹣cosx),記函數(shù)f(x)=2 +1,其中x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的圖象的對(duì)稱中心的坐標(biāo);
(Ⅱ)若α∈(0, ),且f( )= ,求cos2α的值.
【答案】解:f(x)=2(sinxcosx﹣cos2x)+1=sin2x﹣cos2x= sin(2x﹣ ).
(Ⅰ)函數(shù)f(x)的最小正周期T= .
令2x﹣ =kπ,解得x= ,
∴函數(shù)f(x)的圖象的對(duì)稱中心的坐標(biāo)是( ,0).
(Ⅱ)∵f( )=sinα﹣cosα= ,∴1﹣2sinαcosα= ,
∴2sinαcosα= .
∴(sinα+cosα)2=1+2sinαcosα= ,
∵α∈(0, ),∴sinα+cosα= .
又cosα﹣sinα=﹣ ,
∴cos2α=cos2α﹣sin2α=(cosα+sinα)(cosα﹣sinα)=﹣
【解析】(I)根據(jù)平面向量的數(shù)量級(jí)定義得出f(x)解析式并利用二倍角公式化簡,根據(jù)正弦函數(shù)的性質(zhì)列出方程解出對(duì)稱中心;(II)由f( )可得cosα﹣sinα,兩邊平方得出2sinαcosα,從而得出cosα+sinα,代入二倍角公式即可求得cos2α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4 坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為( 為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸 建立極坐標(biāo)系,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(2)若點(diǎn)的直角坐標(biāo)為,圓與直線交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 , 為不共共線的非零向量,且| |=| |=1,則以下四個(gè)向量中模最大者為( )
A. +
B. +
C. +
D. +
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面
底面,且, 、分別為、的中點(diǎn).
(1)求證: 平面;
(2)求證:面平面;
(3)在線段上是否存在點(diǎn),使得二面角的余弦值為?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先將函數(shù)y=f(x)的圖象向左平移 個(gè)單位,然后再將所得圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,最后再將所得圖象向上平移1個(gè)單位,得到函數(shù)y=sinx的圖象.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于點(diǎn)M( ,2)對(duì)稱,求函數(shù)y=g(x)在[0, ]上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語文、數(shù)學(xué)、英語三科,總分為200分.現(xiàn)從上線的考生中隨機(jī)抽取20人,將其成績用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)計(jì)算上線考生中抽取的男生成績的方差;(結(jié)果精確到小數(shù)點(diǎn)后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會(huì),求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P(x,y)滿足方程xy=1(x>0).
(Ⅰ)求動(dòng)點(diǎn)P到直線l:x+2y﹣ =0距離的最小值;
(Ⅱ)設(shè)定點(diǎn)A(a,a),若點(diǎn)P,A之間的最短距離為2 ,求滿足條件的實(shí)數(shù)a的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com