在圓x2+y2=16上任取一點(diǎn)P,過(guò)點(diǎn)P做x軸的垂線段PD,D是垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡是什么?
考點(diǎn):軌跡方程
專(zhuān)題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)出M點(diǎn)的坐標(biāo),由M為線段PD的中點(diǎn)得到P的坐標(biāo),把P的坐標(biāo)代入圓x2+y2=16整理得線段PD的中點(diǎn)M的軌跡.
解答: 解:設(shè)M(x,y),由題意D(x,0),P(x,y1
∵M(jìn)為線段PD的中點(diǎn),∴y1+0=2y,y1=2y.
又∵P(x,y1)在圓x2+y2=16上,
∴x2+4y2=16,即
x2
16
+
y2
4
=1

∴點(diǎn)M的軌跡是橢圓.
點(diǎn)評(píng):本題考查了軌跡方程的求法,訓(xùn)練了利用代入法求曲線的方程,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,y軸正半軸上的點(diǎn)列{An}與曲線y=
2x
(x>0)上的點(diǎn)列{Bn}滿(mǎn)足|OAn|=|OBn|=
1
n
,直線AnBn
在x軸上的截距為an,點(diǎn)Bn的橫坐標(biāo)為bn,n∈N*
(1)證明:an>an+1>4,n∈N*
(2)證明:存在n0∈N*,使得對(duì)任意的n>n0,都有
b2
b1
+
b3
b2
+…+
bn
bn-1
+
bn+1
bn
<n-2004.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x+
2
x2
12的二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng)為m,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1,
(1)求證:直線BD∥平面AB1D1;
(2)求證:平面BDC1∥平面AB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(3,1),在拋物線y2=2x上找一點(diǎn)P,使得|PF|+|PA|取最小值(F為拋物線的焦點(diǎn)),此時(shí)點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)是某簡(jiǎn)諧運(yùn)動(dòng)的函數(shù)解析式,如圖為該函數(shù)在一個(gè)周期內(nèi)的圖象,A為圖象的最高點(diǎn),坐標(biāo)為A(
2
3
,2
3
)、B、C為圖象與x軸的交點(diǎn),且為正三角形.
(1)求該簡(jiǎn)諧運(yùn)動(dòng)的函數(shù)解析式;
(2)若f(x0)=
8
3
5
,且x0∈(-
10
3
,
2
3
),求f(x0+2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+ax+1開(kāi)口向上,滿(mǎn)足f(f(1))=f(3),則-2a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a+
2
2x-1
為奇函數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)證明|f(x)|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},a2+a3+a4=15,an>0,且a2,a3+4,a4+20為等比數(shù)列{bn}的前三項(xiàng).
(1)求{an},{bn}的通項(xiàng)公式.
(2)若數(shù)列cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案