【答案】
分析:①當(dāng)b>0時(shí),把函數(shù)f(x)=|x|x+bx+c分x≥0和x<0兩種情況討論,轉(zhuǎn)化為二次函數(shù)求單調(diào)性;
②當(dāng)b<0時(shí),函數(shù)f(x)在R上有最小值,可以根據(jù)函數(shù)的對(duì)稱性加以判斷;
③函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,c)對(duì)稱,可以根據(jù)函數(shù)圖象的平移解決;
④方程f(x)=0可能有三個(gè)實(shí)數(shù)根,對(duì)b,c去特殊值.
解答:解:①當(dāng)b>0時(shí),f(x)=|x|x+bx+c=
,知函數(shù)f(x)在R上是單調(diào)增函數(shù);
②當(dāng)b<0時(shí),f(x)=|x|x+bx+c=
值域是R,故函數(shù)f(x)在R上沒有最小值;
③若f(x)=|x|x+bx那么函數(shù)f(x)是奇函數(shù)(f(-x)=-f(x)),也就是說函數(shù)f(x)的圖象關(guān)于(0,0)對(duì)稱.而函數(shù)f(x)=|x|x+bx+c的圖象是由函數(shù)f(x)=|x|x+bx的圖象沿Y軸移動(dòng),故圖象一定是關(guān)于(0,c)對(duì)稱的.
④令b=-2,c=0,則f(x)=|x|x-2x=0,解得x=0,2,-2.所以正確.
故答案為:①③④.
點(diǎn)評(píng):此題考查了分段函數(shù)的單調(diào)性、對(duì)稱性和最值問題,對(duì)于含有絕對(duì)值的一類問題,通常采取去絕對(duì)值的方法解決,體現(xiàn)了分類討論的數(shù)學(xué)思想;函數(shù)的對(duì)稱性問題一般轉(zhuǎn)化為函數(shù)的奇偶性加以分析,再根據(jù)函數(shù)圖象的平移解決,體現(xiàn)了轉(zhuǎn)化、運(yùn)動(dòng)的數(shù)學(xué)思想;對(duì)于存在性的命題研究,一般通過特殊值法來解決.是好題,屬中檔題.