設(shè)矩形ABCD的周長(zhǎng)為24,把它關(guān)于AC折起來(lái),連結(jié)BD,得到一個(gè)空間四邊形,則它圍成的四面體ABCD的體積的最大值為
 
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,棱錐的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:當(dāng)矩形的邊長(zhǎng)相等,即矩形是邊長(zhǎng)為6的正方形,把它關(guān)于AC折成直二面角B-AC-D,連結(jié)BD,此時(shí)得到的四面體ABCD的體積最大.
解答: 解:當(dāng)矩形的邊長(zhǎng)相等,即矩形是邊長(zhǎng)為6的正方形,
把它關(guān)于AC折成直二面角B-AC-D,連結(jié)BD,
此時(shí)得到的四面體ABCD的體積最大,
如圖,BO=
1
2
AC=
1
2
36+36
=3
2
,且BO⊥底面ADC,
S△ADC=
1
2
×6×6
=18,
∴四面體ABCD的體積的最大值:
V=
1
3
×3
2
×18
=18
2

故答案為:18
2
點(diǎn)評(píng):本題考查四面體的體積的最大值的求法,是中檔題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若b=2,B=
π
6
,C=
π
4

(1)求邊長(zhǎng)c的值.
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列三個(gè)命題:
①a,b,c均為實(shí)數(shù),則“b2=ac”是“a,b,c依次成等比數(shù)列”的充要條件;
②從一批產(chǎn)品中任取三件,則事件A:“三件產(chǎn)品全不是次品”與事件B:“三件產(chǎn)品既有正品也有次品”是對(duì)立事件;
③命題“若A=B,則sinA=sinB”的逆否命題為真命題.其中正確的命題有
 
.(把你認(rèn)為正確的序號(hào)填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心與點(diǎn)P(-2,1)關(guān)于直線y=2x+1對(duì)稱,直線3x+4y+
19
5
=0與圓C相交于A,B兩點(diǎn),且|AB|=6,則圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量ξ滿足P(ξ=1)=
1
2
,P(ξ=0)=
1
2
,則Dξ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<2π)中,曲線ρ=2cosθ與ρsinθ=-1的交點(diǎn)的極坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(π-α)=
2
3
,則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(wx+φ)圖象與直線y=1的交點(diǎn)中,距離最近兩點(diǎn)間的距離為
π
3
,那么此函數(shù)的周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD,P,Q分別在邊BC﹑CD上,E﹑F分別為AP﹑PQ的中點(diǎn),點(diǎn)Q為CD上定點(diǎn),當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),設(shè)BP=x,EF=Y,那么下列結(jié)論中正確的是( 。
A、y是x的增函數(shù)
B、y是x的減函數(shù)
C、y隨x先增大后減小
D、無(wú)論x怎樣變化,y是常數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案