【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若有兩個(gè)不相等的實(shí)數(shù)根,求證:.

【答案】(1)函數(shù)0,1上單調(diào)遞增,單調(diào)遞減,(2)詳見解析

【解析】

試題分析:(1)先求函數(shù)導(dǎo)數(shù),再在定義區(qū)間上求零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào),可得對(duì)應(yīng)單調(diào)區(qū)間(2)因?yàn)?/span>,所以原不等式等價(jià)于不等式:,再構(gòu)造一元函數(shù):令),即證),最后利用導(dǎo)數(shù)分別研究函數(shù),及單調(diào)性,得出結(jié)論

試題解析:I依題意,所以

因?yàn)楹瘮?shù)的定義域?yàn)?/span>

,由

即函數(shù)0,1上單調(diào)遞增,單調(diào)遞減,

(II)若有兩個(gè)不相等的實(shí)數(shù)根,等價(jià)于直線的圖像有兩個(gè)不同的交點(diǎn)

依題意得,證,即證

,即證

),即證

)則

在(1,+)上單調(diào)遞增,

=0,即

同理可證:

①②),即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線軸交點(diǎn)為,與的交點(diǎn)為,且

的方程;

的直線相交于兩點(diǎn),若的垂直平分線相交于兩點(diǎn),且四點(diǎn)在同一圓上,求的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】10個(gè)相同的小球分成三堆,要求每一堆至少有1個(gè),至多5個(gè),則不同的方法共有

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,橢圓的長(zhǎng)軸為短軸,且與有相同的離心率.

1求橢圓的方程;

2設(shè)為坐標(biāo)原點(diǎn),點(diǎn)分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,點(diǎn)在線段上.

(1)若中點(diǎn),證明:平面

(2)當(dāng)時(shí),求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是矩形,,的中點(diǎn).

1求證:平面平面;

2已知點(diǎn)的中點(diǎn),點(diǎn)上一點(diǎn),且平面平面.若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)幾何體的三視圖如圖所示,已知正(主)視圖是底邊長(zhǎng)為1的平行四邊形,側(cè)(左)視圖是一個(gè)長(zhǎng)為,寬為1的矩形,俯視圖為兩個(gè)邊長(zhǎng)為1的正方形拼成的矩形.

(1)求該幾何體的體積

(2)求該幾何體的表面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題

函數(shù)與函數(shù)表示同一個(gè)函數(shù);

②奇函數(shù)的圖像一定通過直角坐標(biāo)系的原點(diǎn);

函數(shù)的圖像可由的圖像向右平移1個(gè)單位得到;

的最小值為1

對(duì)于函數(shù)fx,若f-1f3<0,則方程在區(qū)間[-1,3]上有一實(shí)根

其中正確命題的序號(hào)是 填上所有正確命題的序號(hào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本25萬元,此外每生產(chǎn)1件這樣的產(chǎn)品,還需增加投入0.5萬元,經(jīng)市場(chǎng)調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為t件時(shí),銷售所得的收入為萬元.

(1)該公司這種產(chǎn)品的年生產(chǎn)量為x件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關(guān)于當(dāng)年產(chǎn)量x的函數(shù)為f(x),求f(x);

(2)當(dāng)該公司的年產(chǎn)量為多少件時(shí),當(dāng)年所獲得的利潤最大

查看答案和解析>>

同步練習(xí)冊(cè)答案