(本小題滿分12分)
如圖,四棱錐P-ABCD中,PA⊥底面ABCDABAD,點(diǎn)E在線段AD上,且CE∥AB。
(1)  求證:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分12分)如圖所示,在四棱錐中,平面,底面是直角梯形,,。
(1)求證:平面平面;

(2)若,求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐P-ABCD中,底面ABCD是正方形,PD底面ABCD,M,N分別PA,BC的中點(diǎn),且PD="AD=1" (12分)
(1)求證:MN∥平面PCD
(2)求證:平面PAC平面PBD
(3)求MN與底面ABCD所成角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PDQA,QA=AB=PD
(I)證明:PQ⊥平面DCQ;
(II)求棱錐QABCD的的體積與棱錐PDCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是底面邊長為1的正四棱柱,高。求:
⑴異面直線所成的角的大。ńY(jié)果用反三角函數(shù)表示);
⑵四面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.

(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求點(diǎn)D到平面ACE的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方中,、分別是棱的中點(diǎn),則直線與直線所成角的大小     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC和△AEF中,B是EF的中點(diǎn),AB=EF=1,,若
,則的夾角等于       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有三個(gè)球和一個(gè)正方體,第一個(gè)球與正方體各個(gè)面相切,第二個(gè)球與正方體各條棱相切,第三個(gè)球過正方體個(gè)頂點(diǎn),則這三個(gè)球的表面積之比為                     

查看答案和解析>>

同步練習(xí)冊(cè)答案