【題目】已知函數(shù).
(1)當(dāng)時,求曲線在處的切線方程;
(2)當(dāng)且,不等式恒成立,求實數(shù)的值.
【答案】(1)(2)
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)點斜式得切線方程(2)根據(jù)分母符號轉(zhuǎn)化為: 時, 時,研究,其導(dǎo)函數(shù)有兩個零點或,根據(jù)與0,1大小分類討論,確定函數(shù)單調(diào)性,進(jìn)而確定函數(shù)最值,解對應(yīng)不等式可得實數(shù)的值.
試題解析:(1)時, , ∴切點為
, ∴切線方程為
即曲線在處的切線方程
(2)∵當(dāng)且時,不等式恒成立
∴時 ∴
又即對且恒成立
等價于時, 時恒成立
∵
令 ∵ ∴或
①時,即時, 時,
∴在單調(diào)遞增∴,∴不符合題意
②當(dāng)時,即時, 時∴在單調(diào)遞減
∴; 時∴在單調(diào)遞減∴
∴符合題意
③當(dāng)時,即時, 時,
∴在單調(diào)遞增∴∴不符合題意
④當(dāng)時,即時, 時, ∴在單調(diào)遞增
∴ ∴不符合題意
綜上, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD, 為線段的中點, 在線段上.
(I)當(dāng)是線段的中點時,求證:PB // 平面ACM;
(II)求證: ;
(III)是否存在點,使二面角的大小為60°,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,且方程有兩個不相等的實數(shù)根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如下圖所示,為抑制房價過快上漲,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;
(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機(jī)抽取三個月的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): , , ;
回歸方程中斜率和截距的最小二乘法估計公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)時,求在上的單調(diào)區(qū)間;
(2)且, 均恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求曲線在處的切線方程;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若函數(shù),當(dāng)時, 的最大值為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(14分)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2.
(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點,求證PC⊥平面AEF;
(Ⅲ)求證CE∥平面PAB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com