【題目】(14分)在四棱錐PABCD中,ABCACD=90°,BACCAD=60°,PA平面ABCDEPD的中點(diǎn),PA=2AB=2.

)求四棱錐PABCD的體積V

)若FPC的中點(diǎn),求證PC平面AEF;

)求證CE平面PAB

【答案】V

【解析】解:()在RtABC中,AB=1,

BAC=60°BC,AC=2.

在RtACD中,AC=2,CAD=60°,

CD=2,AD=4.

SABCD

……………… 3分

V……………… 5分

PACA,FPC的中點(diǎn),

AFPC……………… 7分

PA平面ABCD,PACD

ACCD,PAACA

CD平面PACCDPC

EPD中點(diǎn),FPC中點(diǎn),

EFCD.則EFPC……… 9分

AFEFF,PC平面AEF…… 10分

)證法一:

AD中點(diǎn)M,連EM,CM.則EMPA

EM 平面PAB,PA平面PAB,

EM平面PAB……… 12分

在RtACD中,CAD=60°,ACAM=2,

∴∠ACM=60°.而BAC=60°,MCAB

MC 平面PABAB平面PAB,

MC平面PAB……… 14分

EMMCM

平面EMC平面PAB

EC平面EMC,

EC平面PAB……… 15分

證法二:

延長(zhǎng)DCAB,設(shè)它們交于點(diǎn)N,連PN

∵∠NACDAC=60°,ACCD,

CND的中點(diǎn). ……12分

EPD中點(diǎn),ECPN……14分

EC 平面PAB,PN 平面PAB,

EC平面PAB……… 15分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)當(dāng),不等式恒成立,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線, ,則下列說(shuō)法正確的是( )

A. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

B. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

C. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線

D. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩神坐標(biāo)系中的長(zhǎng)度單位相同.已知曲線的極坐標(biāo)方程為,

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)在曲線上求一點(diǎn),使它到直線 為參數(shù))的距離最短,寫出點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4—5:不等式選講]

已知.

(1)若的解集為,求的值;

(2)若不等式恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)中, 分別是, 的中點(diǎn), 平面, 是等邊三角形, , ,.

(1)證明: 平面;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點(diǎn)為,當(dāng)變化時(shí), 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動(dòng)點(diǎn),求點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別是,橢圓C的上頂點(diǎn)到直線的距離為,過(guò)且垂直于x軸的直線與橢圓C相交于M,N兩點(diǎn),

且|MN|=1

I)求橢圓的方程;

II過(guò)點(diǎn)的直線與橢圓C相交于P,Q兩點(diǎn),點(diǎn)),且,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD是邊長(zhǎng)為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成角為60°.

(1)求二面角F-BE-D的余弦值;

(2)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM平面BEF,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案