【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點的極坐標(biāo)為,曲線 的參數(shù)方程為(為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標(biāo)方程;
(2)點與點關(guān)于軸對稱,求曲線上的點到點的距離的取值范圍.
【答案】(1)直線的極坐標(biāo)方程為或;(2).
【解析】
試題分析:對于問題(1)可以先求出點的直角坐標(biāo)以及曲線的普通方程,利用直線過且與曲線相切,即可求直線的極坐標(biāo)方程;對問題(2)可以先根據(jù)點與點關(guān)于軸對稱,求出點的坐標(biāo),再求出點到圓心的距離,從而可求曲線上的點到點的距離的取值范圍.
試題解析:(1)由題意得點的直角坐標(biāo)為,曲線的一般方程為.
設(shè)直線的方程為,即,
∵直線過且與曲線 相切,∴,
即,解得,
∴直線的極坐標(biāo)方程為或,
(2)∵點與點關(guān)于軸對稱,∴點的直角坐標(biāo)為,
則點到圓心的距離為,
曲線上的點到點的距離的最小值為,最大值為
曲線 上的點到點的距離的取值范圍為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為1的等邊三角形中,分別是,上的點,,是的中點,與交于點,沿折起,得到如圖2所示的三棱錐,其中.
(1)求證:平面平面
(2)若為,上的中點,為中點,求異面直線與所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線對稱,且圖象上相鄰最高點的距離為.
⑴求的解析式;
⑵將的圖象向右平移個單位,得到的圖象若關(guān)于的方程在上有唯一解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點,,且它的圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)求圓關(guān)于直線對稱的圓的方程。
(Ⅲ)若點為圓上任意一點,且點,求線段的中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求的值;
(2)若對任意的,都有成立(其中是函數(shù)的導(dǎo)函數(shù)),求實數(shù)的最小值;
(3)證明:().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點處下上至處有兩種路徑.一種是從沿直線步行到,另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再從勻速步行到,假設(shè)纜車勻速直線運動的速度為,山路長為1260,經(jīng)測量,.
(1)求索道的長;
(2)問:乙出發(fā)多少后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在處互相等待的時間不超過,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量與共線,其中A是△ABC的內(nèi)角.
(1)求角的大;
(2)若BC=2,求△ABC面積的最大值,并判斷S取得最大值時△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,右頂點為.
(1)求的方程;
(2)直線與曲線交于不同的兩點,,若在軸上存在一點,使得,求點的橫坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com