已知點A(1,0),定直線l:x=-1,B為l上的一個動點,過B作直線m⊥l,連接AB,作線段AB的垂直平分線n,交直線m于點M.
(1)求點M的軌跡C的方程;
(2)過點N(4,0)作直線h與點M的軌跡C相交于不同的兩點P,Q,求證OP⊥OQ(O為坐標原點).
(1)由已知|MA|=|MB|
∴M的軌跡為以A為焦點,l為準線的拋物線.
∴M的軌跡方程為y2=4x.
(2)當h⊥x時,h:x=4由
x=4
y2=4x
得y=±4
此時,P(4,4),Q(4,-4)
KOP=1,KOQ=-1∴OP⊥OQ
當h與x軸不垂直時,設l:y=k(x-4)
y=k(x-4)
y2=4x
得k2x2-(8k2+4)x+16k2=0
x1?x2=16,y1?y2=-
x11
?
x22
=-16

OA
OB
=x1?x2+y1?y2=0
∴OP⊥OQ
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,△ABC的頂點B、C的坐標為B(-2,0),C(2,0),直線AB,AC的斜率乘積為-
1
4
,設頂點A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設曲線E與y軸負半軸的交點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,試求
S
|k|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線C:y2=4x焦點為F,直線l經(jīng)過點F且與拋物線C相交于A,B兩點
(Ⅰ)若線段AB的中點在直線y=1上,求直線l的方程;
(Ⅱ)若線段|AB|=20,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,設點F坐標為(1,0),點P在y軸上運動,點M在x軸運動上,其中
PM
PF
=0,若動點N滿足條件
PN
=
MP

(Ⅰ)求動點N的軌跡E的方程;
(Ⅱ)過點F(1,0)的直線l和l′分別與曲線E交于A、B兩點和C、D兩點,若l⊥l′,試求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b,b>0)和圓C2:x2+y2=b2,已知圓C2將橢圓Cl的長軸三等分,且圓C2的面積為π.橢圓Cl的下頂點為E,過坐標原點O且與坐標軸不重合的任意直線l與圓C2相交于點A、B,直線EA、EB與橢圓C1的另一個交點分別是點P、M.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)(i)設PM的斜率為t,直線l斜率為K1,求
K1
t
的值;
(ii)求△EPM面積最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設P(x0,y0)是拋物線y2=2px(p>0)上異于頂點的定點,A(x1,y1),B(x2,y2)是拋物線上的兩個動點,且直線PA與PB的傾斜角互補
(1)求
y1+y2
y0
的值
(2)證明直線AB的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面內(nèi)一動點P到點F(2,0)的距離比點P到y(tǒng)軸的距離大2,
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F且斜率為2
2
的直線交軌跡C于A(x1,y1),B(x2,y2)(x1<x2)兩點,P(x3,y3)(x3≥0)為軌跡C上一點,若
OP
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:x2+y2-2x+4y-4=0,
(Ⅰ)若過定點(-2,0)的直線l與圓C相切,求直線l的方程;
(Ⅱ)若過定點(-1,0)且傾斜角為
π
6
的直線l與圓C相交于A,B兩點,求線段AB的中點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線與雙曲線x2-4y2=4交于A、B兩點,若線段AB的中點坐標為(8,1),則直線的方程為______.

查看答案和解析>>

同步練習冊答案