【題目】某市為創(chuàng)建全國文明城市,推出“行人闖紅燈系統(tǒng)建設(shè)項目”,將針對闖紅燈行為進行曝光.交警部門根據(jù)某十字路口以往的監(jiān)測數(shù)據(jù),從穿越該路口的行人中隨機抽查了人,得到如圖示的列聯(lián)表:

闖紅燈

不闖紅燈

合計

年齡不超過

年齡超過

合計

1)能否有的把握認為闖紅燈行為與年齡有關(guān)?

2)下圖是某路口監(jiān)控設(shè)備抓拍的個月內(nèi)市民闖紅燈人數(shù)的統(tǒng)計圖.請建立的回歸方程,并估計該路口月份闖紅燈人數(shù).

附:

,

參考數(shù)據(jù):,

【答案】1)有的把握認為闖紅燈行為與年齡有關(guān)(2,估計該路口月份闖紅燈人數(shù)為也可)

【解析】

1)由列聯(lián)表計算出卡方,與所給數(shù)據(jù)對比即可得出結(jié)論.

2)根據(jù)所給數(shù)據(jù)計算出,,,即可得到回歸方程,代入計算可得.

1)由列聯(lián)表計算,

所以有的把握認為闖紅燈行為與年齡有關(guān).

2)由題意得,,

時,

所以估計該路口月份闖紅燈人數(shù)為也可)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在直角坐標系xOy中,直線 的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.

(1)求直線的普通方程和曲線C的直角坐標方程;

(2)設(shè)點P是曲線C上的一個動點,求它到直線的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從岳陽到郴州的快速列車包括起始站和終點站共有六站,將這六站分別記為.有一天,張兵和其他18 名旅客乘同一車廂離開岳陽,這些旅客中有些是湖北人,其他的是湖南人,認識所有同車廂旅客的張兵觀測到:除了終點站,在每一站,當火車到達時,這節(jié)車廂上的湖南人的數(shù)目與下車旅客的數(shù)目相同,且這次行程中沒有新的旅客進入這節(jié)車廂.張兵又進一步觀測到:當火車離開站時,車廂內(nèi)有 12名旅客;當火車離開站時,還有 7 名旅客在這一車廂內(nèi);當他準備在站下車時,還有5名旅客在這一車廂內(nèi).試問開始時火車的這一節(jié)車廂有多少湖北人,有多少湖南人?且在旅途中這些數(shù)目如何變化?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】水資源與永恒發(fā)展2015年聯(lián)合國世界水資源日主題.近年來,某企業(yè)每年需要向自來水廠繳納水費約4萬元,為了緩解供水壓力,決定安裝一個可使用4年的自動污水凈化設(shè)備,安裝這種凈水設(shè)備的成本費(單位:萬元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數(shù)約為02.為了保證正常用水,安裝后采用凈水裝置凈水和自來水廠供水互補的用水模式.假設(shè)在此模式下,安裝后該企業(yè)每年向自來水廠繳納的水費 C(單位:萬元)與安裝的這種凈水設(shè)備的占地面積x(單位:平方米)之間的函數(shù)關(guān)系是x≥0,k為常數(shù)).記y為該企業(yè)安裝這種凈水設(shè)備的費用與該企業(yè)4年共將消耗的水費之和.

1) 試解釋的實際意義,請建立y關(guān)于x的函數(shù)關(guān)系式并化簡;

2) 當x為多少平方米時,y取得最小值?最小值是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且

1證明:平面平面

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科技公司新研制生產(chǎn)一種特殊疫苗,為確保疫苗質(zhì)量,定期進行質(zhì)量檢驗.某次檢驗中,從產(chǎn)品中隨機抽取100件作為樣本,測量產(chǎn)品質(zhì)量體系中某項指標值,根據(jù)測量結(jié)果得到如下頻率分布直方圖:

(1)求頻率分布直方圖中的值;

(2)技術(shù)分析人員認為,本次測量的該產(chǎn)品的質(zhì)量指標值X服從正態(tài)分布,若同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,計算,并計算測量數(shù)據(jù)落在(187.8212.2)內(nèi)的概率;

(3)設(shè)生產(chǎn)成本為y元,質(zhì)量指標值為,生產(chǎn)成本與質(zhì)量指標值之間滿足函數(shù)關(guān)系假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,試計算生產(chǎn)該疫苗的平均成本.

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ),求函數(shù)的極值

(Ⅱ),且方程在區(qū)間內(nèi)有解求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,已知,,.

(1)求證:;

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案