【題目】已知函數(shù),.

(1)當時,求曲線在點處的切線方程;

(2)求函數(shù)f(x)的極值.

【答案】(1) xy-2=0;(2) a0時,函數(shù)f(x)無極值;當a>0時,函數(shù)f(x)xa處取得極小值aaln a無極大

【解析】

解:函數(shù)f(x)的定義域為(0,+∞)f′(x)1.

(1)a2時,f(x)x2ln x

f′(x)1(x>0),

因而f(1)1f′(1)=-1,

所以曲線yf(x)在點A(1,f(1))處的切線方程為y1=-(x1),即xy20.

(2)f′(x)1,x>0知:

a≤0時,f′(x)>0,函數(shù)f(x)(0,+∞)上的增函數(shù),函數(shù)f(x)無極值;

a>0時,由f′(x)0,解得xa,

又當x∈(0,a)時,f′(x)<0;

x∈(a,+∞)時,f′(x)>0,

從而函數(shù)f(x)xa處取得極小值,且極小值為f(a)aaln a,無極大值.

綜上,當a≤0時,函數(shù)f(x)無極值;

a>0時,函數(shù)f(x)xa處取得極小值aaln a,無極大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點也是橢圓的一個焦點,點在橢圓短軸上,且.

(1)求橢圓的方程;

(2)設為橢圓上的一個不在軸上的動點,為坐標原點,過橢圓的右焦點的平行線,交曲線兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右頂點為,上頂點為,右焦點為.連接并延長與橢圓相交于點,且

(Ⅰ)求橢圓的方程;

(Ⅱ)設經(jīng)過點的直線與橢圓相交于不同的兩點,直線分別與直線相交于點,點.若的面積是的面積的2倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的焦距為4,且過點

1)求橢圓的方程

2)設橢圓的上頂點為,右焦點為,直線與橢圓交于兩點,問是否存在直線,使得的垂心,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(多選題)有下列幾個命題,其中正確的命題是(

A.函數(shù)上是增函數(shù)

B.函數(shù)上是減函數(shù)

C.函數(shù)的單調(diào)區(qū)間是

D.已知上是增函數(shù),若,則有

E.已知函數(shù)是奇函數(shù),則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)某天時間與水深(單位:米)的關系表:

時刻

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

1)請用一個函數(shù)近似地描述這個港口的水深y與時間t的函數(shù)關系;

2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶?繒r,船底只要不碰海底即可).某船吃水深度(船底離地面的距離)為6.5.

①如果該船是旅游船,1:00進港,希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?

②如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將標號為1,2,…,20的20張卡片放入下列表格中,一個格放入一張卡片,選出每列標號最小的卡片,將這些卡片中標號最大的數(shù)設為;選出每行標號最大的卡片,將這些卡片中標號最小的數(shù)設為

甲同學認為有可能比大,乙同學認為有可能相等,那么甲乙兩位同學的說法中(

A. 甲對乙不對 B. 乙對甲不對 C. 甲乙都對 D. 甲乙都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題的真假.

1)如果直線平行于直線,則平行于經(jīng)過的任何一個平面;

2)如果一條直線不在平面內(nèi),則這條直線就與這個平面平行;

3)過直線外一點,可以作無數(shù)個平面與這條直線平行;

4)如果一條直線與一個平面平行,則它與該平面內(nèi)的任何直線都平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校為了解學生喜歡通用技術課程“機器人制作”是否與學生性別有關,采用簡單隨機抽樣的辦法在我校高一年級抽出一個有60人的班級進行問卷調(diào)查,得到如下的列聯(lián)表:

喜歡

不喜歡

合計

男生

18

女生

6

合計

60

已知從該班隨機抽取1人為喜歡的概率是

()請完成上面的列聯(lián)表;

()根據(jù)列聯(lián)表的數(shù)據(jù),若按90%的可靠性要求,能否認為“喜歡與否和學生性別有關”?請說明理由.

參考臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:其中

查看答案和解析>>

同步練習冊答案