【題目】從某高三年級(jí)男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于和之間,將測量結(jié)果按如下方式分成6組:第1組,第2組,…,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計(jì)該校高三年級(jí)男生身高的中位數(shù);
(2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.
【答案】(1).(2)
【解析】
(1)由頻率分布直方圖得頻率為0.48,的頻率為0.32,由此能求出中位數(shù).
(2)在這50名男生身高不低于的人中任意抽取2人,中的學(xué)生人數(shù)為4人,中的學(xué)生人數(shù)為2人,可用列舉法求出基本事件總數(shù),恰有一人身高在內(nèi)包含的基本事件個(gè)數(shù),再由概率公式計(jì)算出概率.
解:(1)由頻率分布直方圖得頻率為:
,
的頻率為:,
∴中位數(shù)為:.
(2)在這50名男生身高不低于的人中任意抽取2人,
中的學(xué)生人數(shù)為人,編號(hào)為,
中的學(xué)生人數(shù)為人,編號(hào)為,
任意抽取2人的所有基本事件為,,,共15個(gè),
恰有一人身高在內(nèi)包含的基本事件有,,,共8個(gè),
∴恰有一人身高在內(nèi)的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對(duì), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為(為參數(shù)),與交于,兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)設(shè)點(diǎn);若、、成等比數(shù)列,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F,過點(diǎn)的直線l與E交于A,B兩點(diǎn).當(dāng)l過點(diǎn)F時(shí),直線l的斜率為,當(dāng)l的斜率不存在時(shí),.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解一個(gè)小水庫中養(yǎng)殖的魚的有關(guān)情況,從這個(gè)水庫中多個(gè)不同位置捕撈出100條魚,稱得每條魚的質(zhì)量(單位:kg),并將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示).
(1)在下面表格中填寫相應(yīng)的頻率;
分組 | 頻率 |
(2)估計(jì)數(shù)據(jù)落在中的概率;
(3)將上面捕撈的100條魚分別作一記分組頻率號(hào)后再放回水庫.幾天后再從水庫的多處不同位置捕撈出120條魚,其中帶有記號(hào)的魚有6條.請(qǐng)根據(jù)這一情況來估計(jì)該水庫中魚的總條數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在以直角坐標(biāo)原點(diǎn)為極點(diǎn),的非負(fù)半軸為極軸的極坐標(biāo)系下,曲線的方程是,將向上平移1個(gè)單位得到曲線.
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)若曲線的切線交曲線于不同兩點(diǎn),切點(diǎn)為.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是一塊平行四邊形園地,經(jīng)測量,.擬過線段上一點(diǎn) 設(shè)計(jì)一條直路(點(diǎn)在四邊形的邊上,不計(jì)直路的寬度),將該園地分為面積之比為的左,右兩部分分別種植不同花卉.設(shè)(單位:m).
(1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),試確定點(diǎn)的位置;
(2)求關(guān)于的函數(shù)關(guān)系式;
(3)試確定點(diǎn)的位置,使直路的長度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過原點(diǎn)O且斜率不為0的直線與橢圓C交于P,Q兩點(diǎn).
(1)若為橢圓C的一個(gè)焦點(diǎn),求橢圓C的標(biāo)準(zhǔn)方程;
(2)若經(jīng)過橢圓C的右焦點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線OP的方程,若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com