【題目】已知橢圓的右焦點為F,過點的直線lE交于AB兩點.l過點F時,直線l的斜率為,當l的斜率不存在時,.

1)求橢圓E的方程.

2)以AB為直徑的圓是否過定點?若過定點,求出定點的坐標;若不過定點,請說明理由.

【答案】1.2)以AB為直徑的圓恒過定點.

【解析】

1)根據(jù)直線的斜率公式求得的值,由,即可求得的值,求得橢圓方程;

2)當直線的斜率存在,設直線的方程,代入橢圓方程,利用韋達定理及以直徑的圓的方程,令,即可求得,即可判斷以為直徑的圓過定點

1)設橢圓半焦距為c,由題意,所以.

l的斜率不存在時,,所以,.

所以橢圓E的方程為.

2)以AB為直徑的圓過定點.

理由如下:

當直線的斜率存在時,設的方程,,,,

聯(lián)立方程組,消去

整理得,

所以,

所以,

為直徑的圓的方程:,

,

,則

解得,

所以為直徑的圓過定點

當直線l的斜率不存在時,,,

此時以AB為直徑的圓的方程為.

顯然過點

綜上可知,以為直徑的圓過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某超市為了解顧客的購物量及結算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關數(shù)據(jù),統(tǒng)計結果如下表所示,已知這100位顧客中一次購物量超過7件的顧客占.

一次購物量

13

47

811

1215

16件及以上

顧客數(shù)(人)

27

20

10

結算時間(/人)

0.5

1

1.5

2

2.5

1)確定,的值,并求顧客一次購物的結算時間的平均值;

2)從收集的結算時間不超過的顧客中,按分層抽樣的方法抽取5人,再從這5人中隨機抽取2人,求至少有1人的結算時間為的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程:在直角坐標系中,曲線為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的極坐標方程;

2)已知點,直線的極坐標方程為,它與曲線的交點為,,與曲線的交點為,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的上頂點為A,左、右焦點分別為,,直線的斜率為,點在橢圓E上,其中P是橢圓上一動點,Q點坐標為.

(1)求橢圓E的標準方程;

(2)作直線lx軸垂直,交橢圓于兩點(兩點均不與P點重合),直線x軸分別交于點.的最小值及取得最小值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,平面平面,,.

(1)求證:平面平面

(2)若與平面所成的線面角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過點,過作傾斜角互補的兩條不同直線、.

1)求拋物線的方程及準線方程;

2)設直線、分別交拋物線、兩點(均不與重合,如圖),記直線的斜率為正數(shù),若以線段為直徑的圓與拋物線的準線相切,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,該橢圓與軸正半軸交于點,且是邊長為的等邊三角形.

1)求橢圓的標準方程;

2)過點任作一直線交橢圓于兩點,平面上有一動點,設直線,,的斜率分別為,,且滿足,求動點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的極值點;

(Ⅱ)若直線過點,并且與曲線相切,求直線的方程;

(Ⅲ)設函數(shù),其中,求函數(shù)在區(qū)間上的最小值.(其中為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習冊答案