(本小題滿分12分)已知等差數(shù)列滿足:,的前n項(xiàng)和為
(Ⅰ)求通項(xiàng)公式及前n項(xiàng)和;
(Ⅱ)令=(nN*),求數(shù)列的前n項(xiàng)和

(Ⅰ); =;(Ⅱ)= 。

解析試題分析:(1)結(jié)合已知中的等差數(shù)列的項(xiàng)的關(guān)系式,聯(lián)立方程組得到其通項(xiàng)公式和前n項(xiàng)和。
(2)在第一問的基礎(chǔ)上,得到bn的通項(xiàng)公式,進(jìn)而分析運(yùn)用裂項(xiàng)法得到。
解:(Ⅰ)設(shè)等差數(shù)列的公差為d,由已知可得,
解得,……………2分,
所以;………4分  
==………6分
(Ⅱ)由(Ⅰ)知
所以===   ……9分
所以== 
即數(shù)列的前n項(xiàng)和=   ……12分
考點(diǎn):本試題主要考查了等差數(shù)列的通項(xiàng)公式以及前n項(xiàng)和的求解運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是能得到等差數(shù)列的通項(xiàng)公式,然后求解新數(shù)列的通項(xiàng)公式,利用裂項(xiàng)的思想來得到求和。易錯點(diǎn)就是裂項(xiàng)的準(zhǔn)確表示。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,,的前n項(xiàng)和為
(Ⅰ)求
(Ⅱ)令bn=(nN*),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知等差數(shù)列滿足:,.的前n項(xiàng)和為.
(1)求 及;
(2)若 ,),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
在等差數(shù)列中,已知
(Ⅰ)求通項(xiàng)和前n項(xiàng)和;
(Ⅱ)求的最大值以及取得最大值時的序號的值;
(Ⅲ)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知是首項(xiàng)為,公差為的等差數(shù)列.
(1)求通項(xiàng);   
(2)設(shè)是首項(xiàng)為,公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知等差數(shù)列中,是其前項(xiàng)和,,求:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和。
(1)求數(shù)列的通項(xiàng)公式;
(2)求的最大或最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)等差數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為,且
成等比數(shù)列,求;
(III)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知數(shù)列{}中,對一切,點(diǎn)在直線y=x上,
(Ⅰ)令,求證數(shù)列是等比數(shù)列,并求通項(xiàng)(4分);
(Ⅱ)求數(shù)列的通項(xiàng)公式(4分);
(Ⅲ)設(shè)的前n項(xiàng)和,是否存在常數(shù),使得數(shù)列 為等差數(shù)列?若存在,試求出 若不存在,則說明理由(5分).

查看答案和解析>>

同步練習(xí)冊答案