【題目】如圖,拋物線的焦點(diǎn)為,過點(diǎn)作直線與拋物線交于、兩點(diǎn),當(dāng)直線軸垂直時(shí)長為.

1)求拋物線的方程;

2)若的面積相等,求直線的方程.

【答案】1;(2.

【解析】

1)由題意可知點(diǎn)在拋物線上,將該點(diǎn)坐標(biāo)代入拋物線的方程,求得的值,進(jìn)而可求得拋物線的方程;

2)由題意得出,可得知直線的斜率不為零,可設(shè)直線的方程為,將該直線方程與拋物線方程連理,列出韋達(dá)定理,由題意得出,代入韋達(dá)定理后可求得的值,進(jìn)而可求得直線的方程.

1)當(dāng)直線軸垂直時(shí)的長為,

,取,所以,解得,

所以拋物線的方程為

2)由題意知,,

,所以

當(dāng)時(shí),直線與拋物線不存在兩個(gè)交點(diǎn),所以,

故設(shè)直線的方程為,代入拋物線方程得

所以,,,

可得,解得.

所以,直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級有60名學(xué)生,學(xué)號分別為160,其中男生35人,女生25人.為了了解學(xué)生的體質(zhì)情況,甲、乙兩人對全班最近一次體育測試的成績分別進(jìn)行了隨機(jī)抽樣.其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣,他們得到各12人的樣本數(shù)據(jù)如下所示,并規(guī)定體育成績大于或等于80人為優(yōu)秀.

甲抽取的樣本數(shù)據(jù):

學(xué)號

4

9

14

19

24

29

34

39

44

49

54

59

性別

體育成績

90

80

75

80

83

85

75

80

70

80

83

70

女抽取的樣本數(shù)據(jù):

學(xué)號

1

8

10

20

23

28

33

35

43

48

52

57

性別

體育成績

95

85

85

80

70

80

80

65

70

60

70

80

(Ⅰ)在乙抽取的樣本中任取4人,記這4人中體育成績優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;

(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù),判斷是否有95%的把握認(rèn)為體育成績是否為優(yōu)秀和性別有關(guān);

(Ⅲ)判斷甲、乙各用的何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu),說明理由.

附:

0.15

0.10

0.05

0.010

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個(gè)正四棱錐的條棱中任取兩條,按下列方式定義隨機(jī)變量的值:

若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大小(弧度制);

若這兩條棱所在的直線平行,則;

若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).

(1)求的值;

(2)求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐中,均為等腰直角三角形,且,上一點(diǎn),且平面.

1)求證:;

2)過作一平面分別交, ,,,若四邊形為平行四邊形,求多面體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,PCBC,點(diǎn)EPC的中點(diǎn),且平面PBC⊥平面ABCD.求證:

1)求證:PA∥平面BDE;

2)求證:平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中某班共有40個(gè)學(xué)生,將學(xué)生的身高分成4組:平頻率/組距,,進(jìn)行統(tǒng)計(jì),作成如圖所示的頻率分布直方圖.

1)求頻率分布直方圖中的值和身高在內(nèi)的人數(shù);

2)求這40個(gè)學(xué)生平均身高的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)(精確到0.01).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,斜率為的直線x軸交于點(diǎn)A,與y軸交于點(diǎn),過x 軸的平行線,交于點(diǎn),過y軸的平行線,交于點(diǎn),再過x軸的平行線交于點(diǎn),,這樣依次得線段、、、、、,記為點(diǎn)的橫坐標(biāo),則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓C 上一點(diǎn),點(diǎn)P到橢圓C的兩個(gè)焦點(diǎn)的距離之和為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)A,B是橢圓C上異于點(diǎn)P的兩點(diǎn),直線PA與直線交于點(diǎn)M,

是否存在點(diǎn)A,使得?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)己知函數(shù)有兩個(gè)極值點(diǎn)

①比較的大;

②若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案