【題目】已知函數(shù)恰有兩個極值點,且.

(1)求實數(shù)的取值范圍;

(2)若不等式恒成立,求實數(shù)的取值范圍.

【答案】(1);(2).

【解析】試題分析:()求出,, ,令, ,由此利用導數(shù)性質(zhì)能求出實數(shù)a的取值范圍.
()由()得, ,兩式相減,得, ,從而 ,令,,得,令,則 ,令,則,,由此利用分類討論思想,結(jié)合導數(shù)性質(zhì)能求出實數(shù)的取值范圍.

試題解析:

(1)因為

依題意得為方程的兩不等正實數(shù)根,

, ,

,

時, ;

時, ,

所以上單調(diào)遞增,在上單調(diào)遞減, ,

時, ,

所以

解得,

故實數(shù)的取值范圍是.

(2)由(1)得, , ,兩式相加得

,

兩式相減可得

所以等價于,

所以

所以

,

所以

因為,令,所以

,令,

上恒成立, ,

,

①當時, 所以上單調(diào)遞減,

所以上單調(diào)遞增,

所以符合題意

②當時, 所以上單調(diào)遞增

上單調(diào)遞減,

所以不符合題意;

③當時,

所以上單調(diào)遞增,

所以所以上單調(diào)遞減,

不符合題意

綜上所述,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】寫出下列語句的運行結(jié)果:

輸入a
if a<0
then 輸出“是負數(shù)”
else t=
輸出 t

a=﹣4,輸出結(jié)果為 ,a=9,輸出結(jié)果為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以點 ,且)為圓心的圓與軸交于點 ,與軸交于點 ,其中為坐標原點.

(1)求證: 的面積為定值;

(2)設直線與圓交于點 ,若,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點F(m,0),左、右準線分別為l1:x=﹣m﹣1,l2:x=m+1,且l1 , l2分別與直線y=x相交于A,B兩點.
(1)若離心率為 ,求橢圓的方程;
(2)當 <7時,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,已知橢圓C: =1(a>b>0)的離心率e= ,左頂點為A(﹣4,0),過點A作斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.

(1)求橢圓C的方程;
(2)已知P為AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點Q的坐標;若不存在說明理由;
(3)若過O點作直線l的平行線交橢圓C于點M,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)當時,求處的切線方程;

(2)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中A(3,﹣1),AB邊上的中線CM所在直線方程為6x+10y﹣59=0,∠B的平分線方程BT為x﹣4y+10=0.
(1)求頂點B的坐標;
(2)求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“石頭、剪刀、布”,又稱“猜丁殼”,是一種流行多年的猜拳游戲,起源于中國,然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在語音剛落時同時出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過“石頭”.若所出的拳相同,則為和局.小軍和大明兩位同學進行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小軍和大明比賽至第四局小軍勝出的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知Sn為等比數(shù)列{an}的前n項和且S4=S3+3a3 , a2=9.
(1)求數(shù)列{an}的通項公式
(2)設bn=(2n﹣1)an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案