直線l過拋物線C∶y2=2px(p>0)的焦點F,且交拋物線C于A,B兩點,分別從A,B兩點向拋物線的準線引垂線,垂足分別為A1,B1,則∠A1FB1


  1. A.
    銳角
  2. B.
    直角
  3. C.
    鈍角
  4. D.
    直角或鈍角
B
先由拋物線定義可知AA1=AF,可推斷∠1=∠2;又根據(jù)AA1∥x軸,可知∠1=∠3,進而可得∠2=∠3,同理可求得∠4=∠6,最后根據(jù)
∴∠A1FB1=∠3+∠6答案可得.
解:如圖,由拋物線定義可知AA1=AF,故∠1=∠2,

又∵AA1∥x軸,
∴∠1=∠3,從而∠2=∠3,同理可證得∠4=∠6,
∴∠A1FB1=∠3+∠6=,
故選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=4x,直線l:y=kx+b與C交于A,B兩點,O為坐標原點.
(1)當k=1,且直線l過拋物線C的焦點時,求|AB|的值;
(2)當直線OA,OB的傾斜角之和為45°時,求k,b之間滿足的關系式,并證明直線l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=4x,直線l:y=
12
x+b與C交于A、B兩點,O為坐標原點.
(1)當直線l過拋物線C的焦點F時,求|AB|;
(2)是否存在直線l使得直線OA、OB傾斜角之和為135°,若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•北京)直線l過拋物線C:x2=4y的焦點且與y軸垂直,則l與C所圍成的圖形的面積等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(北京卷解析版) 題型:選擇題

直線l過拋物線C: x2=4y的焦點且與y軸垂直,則l與C所圍成的圖形的面積等于(   )

A.              B.2                C.               D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省石家莊市高三下學期第二次質量檢測文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

已知直線l1:4x:-3y+6=0和直線l2:x=-,.若拋物線C:y2=2px上的點到直線l1和直線l2的距離之和的最小值為2.

(I )求拋物線C的方程;

(II)直線l過拋物線C的焦點F與拋物線交于A,B兩點,且AA1,BB1都垂直于直線l2,垂足為A1,B1,直線l2與y軸的交點為Q,求證:為定值。

 

查看答案和解析>>

同步練習冊答案