已知拋物線y2=2px(p>0)的準(zhǔn)線方程是,直線x-y-2=0與拋物線相交于M,N兩點(diǎn).
(1)求拋物線的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),證明:OM⊥ON.
【答案】分析:(1)y2=2px(p>0)的準(zhǔn)線方程為,故p=1.由此能求出拋物線方程.
(2)將x=y+2代入y2=2x,得y2-2y-4=0,設(shè)M(x1,y1),N(x2,y2),則y1y2=-4,由y12=2x1,y22=2x2,得,由此能導(dǎo)出OM⊥ON.
解答:解:(1)∵y2=2px(p>0)的準(zhǔn)線方程為,
∴p=1.
∴拋物線方程為y2=2x.
(2)證明:將x=y+2代入y2=2x,消去x,整理,得y2-2y-4=0,
設(shè)M(x1,y1),N(x2,y2),
∵M(jìn),N的縱坐標(biāo)y1,y2是y2-2y-4=0的兩個(gè)根,
∴y1y2=-4,
由y12=2x1,y22=2x2,得
y12y22=4x1x2,
,

,
∴OM⊥ON.
點(diǎn)評(píng):本題考查拋物線方程的求法和直線垂直的證明,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意直線和拋物線位置關(guān)系的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l.
(1)求拋物線上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過(guò)點(diǎn)F作一直線與拋物線相交于A,B兩點(diǎn),并在準(zhǔn)線l上任取一點(diǎn)M,當(dāng)M不在x軸上時(shí),證明:
kMA+kMBkMF
是一個(gè)定值,并求出這個(gè)值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過(guò)點(diǎn)M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點(diǎn).求證:直線AB經(jīng)過(guò)點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案