【題目】已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)=log2 f(x)的最小值為2,求a的值;
(2)若對(duì)任意x∈R,都有f(x)≥0成立,求函數(shù)g(a)=2﹣a|a+3|的值域.
【答案】
(1)解:函數(shù)f(x)=log2f(x)的最小值為2,即f(x)的最小值為4;
∵f(x)=x2+4ax+2a+6=(x+2a)2+2a+6﹣4a2≥4;
∴2a+6﹣4a2=4a=1 或 a=
(2)解:∵函數(shù)f(x)≥0恒成立,
∴△=16a2﹣4(2a+6)≤0,計(jì)算得出:﹣1 ;
∴g(a)=2﹣a|a+3|=2﹣a(a+3)=﹣(a+ )2+ ;
∵g(a)在區(qū)間[﹣1, ]單調(diào)遞減;
∴g(a)min=g( )=﹣ ,g(a)max=g(﹣1)=4.
∴函數(shù)g(a)的值域?yàn)閇﹣ ,4]
【解析】(1)因?yàn)楹瘮?shù)f(x)=log2 f(x)的最小值為2,即f(x)的最小值為4;關(guān)鍵在于2a+6﹣4a2=4.(2)函數(shù)f(x)≥0恒成立,所以△≤0;同時(shí)可得g(a)在區(qū)間[﹣1, ]單調(diào)遞減,即可求出g(a)的值域.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小型風(fēng)力發(fā)電項(xiàng)目投資較少,開發(fā)前景廣闊.受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測算,IEC(國際電工委員會(huì))風(fēng)能風(fēng)區(qū)的分類標(biāo)準(zhǔn)如下:
風(fēng)能分類 | 一類風(fēng)區(qū) | 二類風(fēng)區(qū) |
平均風(fēng)速m/s | 8.5---10 | 6.5---8.5 |
某公司計(jì)劃用不超過100萬元的資金投資于A、B兩個(gè)小型風(fēng)能發(fā)電項(xiàng)目.調(diào)研結(jié)果是:未來一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利%的可能性為0.6,虧損%的可能性為0.4;
B項(xiàng)目位于二類風(fēng)區(qū),獲利35%的可能性為0.6,虧損10%的可能性是0.2,不賠不賺的可能性是0.2.
假設(shè)投資A項(xiàng)目的資金為()萬元,投資B項(xiàng)目資金為()萬元,且公司要求對(duì)A項(xiàng)目的投資不得低于B項(xiàng)目.
(Ⅰ)記投資A,B項(xiàng)目的利潤分別為和,試寫出隨機(jī)變量與的分布列和期望, ;
(Ⅱ)根據(jù)以上的條件和市場調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利潤之和 的最大值,并據(jù)此給出公司分配投資金額建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為2,圓心在直線y=x+2上的圓C.
(1)當(dāng)圓C經(jīng)過點(diǎn)A(2,2)且與y軸相切時(shí),求圓C的方程;
(2)已知E(1,1),F(xiàn)(1,3),若圓C上存在點(diǎn)Q,使|QF|2﹣|QE|2=32,求圓心橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=a (0<a<1)的單調(diào)遞增區(qū)間是( )
A.(﹣∞, )
B.( ,+∞)
C.(﹣∞,﹣ )
D.(﹣ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線x2﹣ =1的左、右焦點(diǎn)分別為F1、F2 , 若點(diǎn)P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年入秋以來,某市多有霧霾天氣,空氣污染較為嚴(yán)重.市環(huán)保研究所對(duì)近期每天的空氣污染情況進(jìn)行調(diào)査研究后發(fā)現(xiàn),每一天中空氣污染指數(shù)與f(x)時(shí)刻x(時(shí))的函數(shù)關(guān)系為f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)若a= ,求一天中哪個(gè)時(shí)刻該市的空氣污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過3,則調(diào)節(jié)參數(shù)a應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第96屆(春季)全國糖酒商品交易會(huì)于2017年3月23日至25日在四川舉辦.展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會(huì)前查閱了最近5次交易會(huì)的參會(huì)人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):
(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會(huì)大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補(bǔ)充原材料多少袋?
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費(fèi)用是每日92元,根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金x元只取整數(shù),用f(x)元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入﹣管理費(fèi)用)
(1)求函數(shù)f(x)的解析式及其定義域;
(2)當(dāng)租金定為多少時(shí),才能使一天的純收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()離心率為,過點(diǎn)的橢圓的兩條切線相互垂直.
(1)求此橢圓的方程;
(2)若存在過點(diǎn)的直線交橢圓于兩點(diǎn),使得(為右焦點(diǎn)),求的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com