【題目】已知橢圓)離心率為,過(guò)點(diǎn)的橢圓的兩條切線相互垂直.

(1)求此橢圓的方程;

(2)若存在過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),使得為右焦點(diǎn)),求的范圍.

【答案】(1);(2).

【解析】試題分析:(1)根據(jù)橢圓的對(duì)稱性可知,兩條切線斜率為,由此求得切線的方程,聯(lián)立切線的方程和橢圓的方程,利用判別式等于零列一個(gè)方程,結(jié)合離心率為可求得的值.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,消去,寫出韋達(dá)定理,將坐標(biāo)代入可求得直線方程兩個(gè)參數(shù)的等量關(guān)系,由此求得的取值范圍.

試題解析:

(1)由橢圓的對(duì)稱性,不妨設(shè)在軸上方的切點(diǎn)為, 軸下方的切點(diǎn)為,則 的直線方程為,

所以, ,則,所以方程為橢圓方程為。

(2)令的方程為, ,則,

, ,

=

所以有解,

所以,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)=log2 f(x)的最小值為2,求a的值;
(2)若對(duì)任意x∈R,都有f(x)≥0成立,求函數(shù)g(a)=2﹣a|a+3|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn).線段AQ的垂直平分線與CQ的連線交于點(diǎn)M,則M的軌跡方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若全集U=R,函數(shù)y= + 的定義域?yàn)锳,函數(shù)y= 的值域?yàn)锽.
(1)求集合A,B;
(2)求(UA)∩(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時(shí),f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組函數(shù)中不表示同一函數(shù)的是(
A.f(x)=lgx2 , g(x)=2lg|x|
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.f(x)=|x+1|,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓, 在拋物線上,圓過(guò)原點(diǎn)且與的準(zhǔn)線相切.

(Ⅰ) 求的方程;

(Ⅱ) 點(diǎn),點(diǎn)(與不重合)在直線上運(yùn)動(dòng),過(guò)點(diǎn)的兩條切線,切點(diǎn)分別為, .求證: (其中為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M:x2+y2+4x﹣2y+3=0,直線l過(guò)點(diǎn)P(﹣3,0),圓M的圓心坐標(biāo)是;若直線l與圓M相切,則切線在y軸上的截距是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若存在最小值,求的取值范圍;

(Ⅱ)當(dāng)時(shí),證明: .

查看答案和解析>>

同步練習(xí)冊(cè)答案