【題目】已知函數(shù)f(x)=x|x-4| (x∈R)

(1)用分段形式寫(xiě)出函數(shù)f(x)的表達(dá)式,并作出函數(shù)f(x)的圖象;

(2) 根據(jù)圖象指出f(x)的單調(diào)區(qū)間,并寫(xiě)出不等式f(x)>0的解集;

(3) 若h(x)=f(x)-k有三個(gè)零點(diǎn),寫(xiě)出k的取值范圍.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)

【解析】

分析:(1)根據(jù)絕對(duì)值的定義,利用零點(diǎn)分段法,分當(dāng)時(shí)和當(dāng)時(shí)兩種情況,化簡(jiǎn)函數(shù)的解析式,最后可將函數(shù)寫(xiě)出分段函數(shù)的形式;根據(jù)分段函數(shù)圖象分段畫(huà)的原則,結(jié)合二次函數(shù)的圖象和性質(zhì),可作出圖象;

(2)結(jié)合圖象可得函數(shù)的單調(diào)區(qū)間及不等式的解集;;
(3)根據(jù)(2)中函數(shù)的圖象,結(jié)合函數(shù)的極大值為0,極小值為-4,可得 有三個(gè)零點(diǎn)時(shí)的取值范圍.

詳解:

(1)當(dāng)時(shí),,
當(dāng)時(shí),
綜上所述: ;根據(jù)分段函數(shù)圖象的作法,其函數(shù)圖象如圖所示:

(2)單調(diào)增區(qū)間: 單調(diào)減區(qū)間: 、

不等式解集為: ;

(3)寫(xiě)出的取值范圍是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=axex , 其中常數(shù)a≠0,e為自然對(duì)數(shù)的底數(shù). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅲ)若直線y=e(x﹣ )是曲線y=f(x)的切線,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的分別為a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面積為 ,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)求函數(shù)的最小正周期和對(duì)稱軸方程;

(2)若,求的值域.

【答案】(1)對(duì)稱軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進(jìn)行化簡(jiǎn)得到,由周期公式和對(duì)稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.

(1)

,則

的對(duì)稱軸為,最小正周期

(2)當(dāng)時(shí),

因?yàn)?/span>單調(diào)遞增,在單調(diào)遞減,

取最大值,在取最小值,

所以,

所以

【點(diǎn)睛】

本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對(duì)稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應(yīng)用,屬于基礎(chǔ)題.

型】解答
結(jié)束】
21

【題目】已知等比數(shù)列的前項(xiàng)和為,公比,,

(1)求等比數(shù)列的通項(xiàng)公式;

(2)設(shè),求的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex(x2+ax+a). (I)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ABBCBABC,BD是邊AC上的高,沿BDABC折起,當(dāng)三棱錐ABCD的體積最大時(shí),該三棱錐外接球表面積為( 。

A. 12πB. 24πC. 36πD. 48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求a的值和函數(shù)f(x)的定義域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】Ⅰ)如表所示是某市最近5年個(gè)人年平均收入表節(jié)選.求y關(guān)于x的回歸直線方程,并估計(jì)第6年該市的個(gè)人年平均收入(保留三位有效數(shù)字).

年份x

1

2

3

4

5

收入y(千元)

21

24

27

29

31

其中, 1:= ,=

Ⅱ)下表是從調(diào)查某行業(yè)個(gè)人平均收入與接受專業(yè)培訓(xùn)時(shí)間關(guān)系得到2×2列聯(lián)表:

受培時(shí)間一年以上

受培時(shí)間不足一年

總計(jì)

收入不低于平均值

60

20

收入低于平均值

10

20

總計(jì)

100

完成上表,并回答:能否在犯錯(cuò)概率不超過(guò)0.05的前提下認(rèn)為收入與接受培訓(xùn)時(shí)間有關(guān)系”.

2:

PK2k0

0.50

0.40

0.10

0.05

0.01

0.005

k0

0.455

0.708

2.706

3.841

6.635

7.879

3:

K2=.(n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x3與g(x)=x3﹣ax的圖象上存在關(guān)于x軸的對(duì)稱點(diǎn),則實(shí)數(shù)a的取值范圍為(
A.(﹣∞,e)
B.(﹣∞,e]
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案