【題目】ABC中,ABBC,BABC,BD是邊AC上的高,沿BDABC折起,當(dāng)三棱錐ABCD的體積最大時(shí),該三棱錐外接球表面積為( 。

A. 12πB. 24πC. 36πD. 48π

【答案】A

【解析】

要使三棱錐ABCD體積最大,則AD⊥平面BDC,利用補(bǔ)形法將三棱錐補(bǔ)成分別以邊的正方體,正方體的外接球就是該三棱錐的外接球,求得正方體的外接球半徑為,問(wèn)題得解。

解:如圖,

RtABC中,由ABBC,BABC,得AC4,

ADDCBD2

要使三棱錐ABCD體積最大,則AD⊥平面BDC,

利用補(bǔ)形法將三棱錐補(bǔ)成分別以邊的正方體,正方體的外接球就是該三棱錐的外接球

可得三棱錐ABCD的外接球的半徑R

∴該三棱錐的外接球的表面積為

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0),離心率e= ,已知點(diǎn)P(0, )到橢圓C的右焦點(diǎn)F的距離是 .設(shè)經(jīng)過(guò)點(diǎn)P且斜率存在的直線與橢圓C相交于A、B兩點(diǎn),線段AB的中垂線與x軸相交于一點(diǎn)Q. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求點(diǎn)Q的橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)對(duì)(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,則稱集合M具有∟性,給出下列四個(gè)集合: ①M(fèi)={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ ,現(xiàn)有一組數(shù)據(jù),繪制得到莖葉圖,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.(莖葉圖中的數(shù)據(jù)均為小數(shù),其中莖為整數(shù)部分,葉為小數(shù)部分)
(Ⅰ)求a的值;
(Ⅱ)現(xiàn)從莖葉圖小于3的數(shù)據(jù)中任取2個(gè)數(shù)據(jù)分別替換m的值,求恰有1個(gè)數(shù)據(jù)使得函數(shù)f(x)沒(méi)有零點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x|x-4| (x∈R)

(1)用分段形式寫出函數(shù)f(x)的表達(dá)式,并作出函數(shù)f(x)的圖象;

(2) 根據(jù)圖象指出f(x)的單調(diào)區(qū)間,并寫出不等式f(x)>0的解集;

(3) 若h(x)=f(x)-k有三個(gè)零點(diǎn),寫出k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC和△A1B1C1滿足sinA=cosA1 , sinB=cosB1 , sinC=cosC1
(1)求證:△ABC是鈍角三角形,并求最大角的度數(shù);
(2)求sin2A+sin2B+sin2C的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD與直角梯形ABEF,∠DAF=∠FAB=90°,點(diǎn)G為DF的中點(diǎn),AF=EF= ,P在線段CD上運(yùn)動(dòng).
(1)證明:BF∥平面GAC;
(2)當(dāng)P運(yùn)動(dòng)到CD的中點(diǎn)位置時(shí),PG與PB長(zhǎng)度之和最小,求二面角P﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知,對(duì)任意nN*,都有2Sn=(n+1an

1)求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列的前項(xiàng)和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三點(diǎn),,,曲線上任意一點(diǎn)滿足

的方程;

已知點(diǎn),動(dòng)點(diǎn) 在曲線C上,曲線C在Q處的切線與直線PA,PB都相交,交點(diǎn)分別為D,E,求的面積的比值.

查看答案和解析>>

同步練習(xí)冊(cè)答案