【題目】如圖,PA⊥☉O所在的平面,AB是☉O的直徑,C是☉O上的一點(diǎn),AE⊥PB于E,AF⊥PC于F,給出下列結(jié)論:①BC⊥平面PAC;②AF⊥平面PCB;③EF⊥PB;④AE⊥平面PBC.其中正確命題的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】因?yàn)镻A⊥☉O所在的平面,BC☉O所在的平面,所以PA⊥BC,而BC⊥AC,AC∩PA=A,所以BC⊥平面PAC,故①正確;又因?yàn)锳F平面PAC,所以AF⊥BC,而AF⊥PC,PC∩BC=C,所以AF⊥平面PCB,故②正確;而PB平面PCB,所以AF⊥PB,而AE⊥PB,AE∩AF=A,所以PB⊥平面AEF,而EF平面AEF,所以EF⊥PB,故③正確;因?yàn)锳F⊥平面PCB,假設(shè)AE⊥平面PBC,所以AF∥AE,顯然不成立,故④不正確;故選C.
點(diǎn)睛:本題考查線面垂直的判定定理和線面垂直的性質(zhì)定理,屬于中檔題.根據(jù)線面垂直的判定,可證出BC垂直于平面PAC,從而AF垂直于BC,結(jié)合已知條件得出AF垂直于平面PCB,最后可證明出PB垂直于平面AEF,從而得到EF垂直于PB,因此可知命題①②③正確,得出正確選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)y=sinx+ cosx的圖象向右平移φ(φ>0)個(gè)單位長(zhǎng)度得到函數(shù)y=sinx﹣ cosx的圖象,則φ的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,點(diǎn)E是AB的中點(diǎn).
(1)求證:OE∥平面BCC1B1.
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為(2 , ). (Ⅰ)求直線l以及曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A,B兩點(diǎn),求△PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線a,b和平面M,N,且a⊥M,則下列說法正確的是 ( )
A. b∥Mb⊥a B. b⊥ab∥M
C. N⊥Ma∥N D. aNM∩N≠
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會(huì)”等五個(gè)社團(tuán),若每名同學(xué)必須參加且只能參加1個(gè)社團(tuán)且每個(gè)社團(tuán)至多兩人參加,則這6個(gè)人中沒有人參加“演講團(tuán)”的不同參加方法數(shù)為( )
A.3600
B.1080
C.1440
D.2520
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然對(duì)數(shù)的底.
(1)若f(x)在x=1處取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知幾何體的三視圖(單位:cm).
(1)畫出這個(gè)幾何體的直觀圖(不要求寫畫法).
(2)求這個(gè)幾何體的表面積及體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=k(x﹣1)ex+x2 . (Ⅰ)當(dāng)時(shí)k=﹣ ,求函數(shù)f(x)在點(diǎn)(1,1)處的切線方程;
(Ⅱ)若在y軸的左側(cè),函數(shù)g(x)=x2+(k+2)x的圖象恒在f(x)的導(dǎo)函數(shù)f′(x)圖象的上方,求k的取值范圍;
(Ⅲ)當(dāng)k≤﹣l時(shí),求函數(shù)f(x)在[k,1]上的最小值m.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com