【題目】已知直線a,b和平面M,N,且a⊥M,則下列說法正確的是 ( )
A. b∥Mb⊥a B. b⊥ab∥M
C. N⊥Ma∥N D. aNM∩N≠
【答案】A
【解析】對于A,如圖1所示:過直線b作平面N與平面M相交于直線l,由直線與平面平行的性質定理可知:b∥l,又因為a⊥M,lM,所以a⊥l,所以b⊥a,A正確.選項B,C均少考慮了直線在面內的情況,分別如圖2,3所示,均錯誤;對于D,用排除法,如圖4所示,M∥N,D錯誤;故選A.
點睛:直線與平面的位置關系有:平行,相交和直線在平面內, 直線與平面平行:(1)定義:如果直線a與平面α沒有公共點,則直線a與平面α平行;(2)判定定理:平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行. (3)性質定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行.
科目:高中數學 來源: 題型:
【題目】如圖正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:
①與所成角的正切值是;
②∥;
③的體積是;
④平面⊥平面;
⑤直線與平面所成角為.
其中正確的有 .(填寫你認為正確的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A(n)表示正整數n的個位數,an=A(n2)﹣A(n),A為數列{an}的前202項和,函數f(x)=ex﹣e+1,若函數g(x)滿足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),則數列{bn}的前n項和為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)請按字母F、G、H標記在正方體相應地頂點處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關系.并說明你的結論;
(3)證明:直線DF⊥平面BEG.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,PA⊥☉O所在的平面,AB是☉O的直徑,C是☉O上的一點,AE⊥PB于E,AF⊥PC于F,給出下列結論:①BC⊥平面PAC;②AF⊥平面PCB;③EF⊥PB;④AE⊥平面PBC.其中正確命題的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】AB是☉O的直徑,點C是☉O上的動點(點C不與A,B重合),過動點C的直線VC垂直于☉O所在的平面,D,E分別是VA,VC的中點,則下列結論中正確的是________(填寫正確結論的序號).
(1)直線DE∥平面ABC.
(2)直線DE⊥平面VBC.
(3)DE⊥VB.
(4)DE⊥AB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)滿足f(x﹣1)的對稱軸為x=1,f(x+1)= (f(x)≠0),且在區(qū)間(1,2)上單調遞減,已知α、β是鈍角三角形中兩銳角,則f(sinα)和f(cosβ)的大小關系是( )
A.f(sinα)>f(cosβ)
B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)
D.以上情況均有可能
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養(yǎng)魚技術具有養(yǎng)殖密度高、經濟效益好的特點.研究表明:“活水圍網”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數.當不超過尾/立方米時, 的值為千克/年;當時, 是的一次函數,且當時, .
()當時,求關于的函數的表達式.
()當養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com