精英家教網 > 高中數學 > 題目詳情

已知圓系方程x2+y2-2ax-4ay+a2=0(a≠0).

(1)求出該圓系的圓心的軌跡方程;

(2)求出此圓系的公切線方程.

答案:
解析:

  (1)配方得圓的方程是(x-a)2+(y-2a)2,∴圓心軌跡方程是y=2x(x≠0).

  (2)設公切線方程是kx-y+b=0,則弦心距d=,∴(k2-8k+7)a2+4(k-2)ab+2b2=0,欲對任意a(a≠0)等式成立,∴b=0,且k=1,或k=7,∴公切線方程為y=x,或y=7x.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓系方程x2+y2+2kx+(4k+10)y+5k2+20k=0(k∈R),是否存在斜率為2的直線l被圓系方程表示的任意一圓截得的弦長是定值4
5
?如果存在,試求直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:全優(yōu)設計必修二數學蘇教版 蘇教版 題型:047

已知圓系方程x2+y2-2ax+2(a-2)y+2=0,其中a≠1,且a∈R,求證:該圓系恒過定點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓系方程x2+y2+2kx+(4k+10)y+5k2+20k=0(k∈R),是否存在斜率為2的直線l被圓系方程表示的任意一圓截得的弦長是定值4
5
?如果存在,試求直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓系的方程為x2+y2-2acosφ·x-2asinφ·y=0(a>0).

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動圓相交所得的公共弦長為定值.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省江門市開平市風采華僑中學高一(下)第一次月考數學試卷(解析版) 題型:解答題

已知圓系方程x2+y2+2kx+(4k+10)y+5k2+20k=0(k∈R),是否存在斜率為2的直線l被圓系方程表示的任意一圓截得的弦長是定值?如果存在,試求直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案