已知圓系的方程為x2+y2-2acosφ·x-2asinφ·y=0(a>0).

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動(dòng)圓相交所得的公共弦長為定值.

解:(1)將圓系方程配方:(x-acosφ)2+(y-asinφ)2=a2.

所以圓心的軌跡的參數(shù)方程為(φ為參數(shù)).

消去φ,得x2+y2=a2.

(2)兩圓公共弦所在直線方程由方程組

求得2axcosφ+2aysinφ-a2=0,圓x2+y2=a2圓心為(0,0),弦心距d=.

定圓的弦心距為定值,則弦長為定值,這個(gè)定值為d=a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(10分)坐標(biāo)系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

   (1)求圓系圓心的軌跡方程;

   (2)證明圓心軌跡與動(dòng)圓相交所得的公共弦長為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年銀川一中一模理)  (10分) 坐標(biāo)系與參數(shù)方程已知圓系的方程為

x2+y2-2axCos-2aySin=0(a>0)

   (1)求圓系圓心的軌跡方程;

   (2)證明圓心軌跡與動(dòng)圓相交所得的公共弦長為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動(dòng)圓相交所得的公共弦長為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

(1)求圓系圓心的軌跡方程;

(2)證明圓心軌跡與動(dòng)圓相交所得的公共弦長為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案