【題目】已知函數(shù)f(x)=()|x|,若函數(shù)g(x)=f(x1)+a(ex1+ex+1)存在最大值M,則實(shí)數(shù)a的取值范圍為_____

【答案】a0

【解析】

由函數(shù)f(x)=()|x|對(duì)稱性和單調(diào)性可得f(x1)的對(duì)稱性和單調(diào)性,由h(x)=ex1+ex+1的對(duì)稱性和單調(diào)性,通過討論g(x)=f(x1)+a(ex1+ex+1)得對(duì)稱性和單調(diào)性,利用對(duì)稱性和單調(diào)性可得結(jié)果.

顯然f(x)=()|x|是偶函數(shù),且f(x)在上單調(diào)遞減,

y=f(x1)的函數(shù)圖象關(guān)于直線x=1對(duì)稱,且y=f(x1)在(﹣∞,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.

h(x)=ex1+ex+1,則h(1+x)=ex+ex,h(1x)=ex+ex,故h(1x)=h(1+x),

h(x)的圖象關(guān)于直線x=1對(duì)稱,

g(x)=f(x)+ah(x)的圖象關(guān)于直線x=1對(duì)稱.

g(x)由最大值M,∴g(x)在[1,+∞)上有最大值M.

h′(x)=ex1,

x>1時(shí),h′(x)>0,∴h(x)在[1,+∞)上單調(diào)遞增,

(1)若a0,則g(x)=f(x1)+ah(x)在[1,+∞)上單調(diào)遞減,

g(x)存在最大值,符合題意.

(2)若a>0,當(dāng)x1時(shí),g′(x)=﹣()x1ln2+a(ex1),

顯然g′(x)是增函數(shù),故g′(x)≥g′(1)=﹣1,

x→+∞時(shí),g′(x)→+∞,故存在x0∈(1,+∞),使得當(dāng)x>x0時(shí),g′(x)>0,

g(x)在(x0,+∞)上單調(diào)遞增,故g(x)不存在最大值,不符合題意.

綜上,a0.

故答案為:a0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集,關(guān)于的不等式)的解集為.

1)求集合;

2)設(shè)集合,若 中有且只有三個(gè)元素,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為( 。

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線交曲線,兩點(diǎn),交曲線,兩點(diǎn),求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)初中學(xué)生的體質(zhì)健康情況,統(tǒng)計(jì)了該地區(qū)8所學(xué)校學(xué)生的體質(zhì)健康數(shù)據(jù),按總分評(píng)定等級(jí)為優(yōu)秀,良好,及格,不及格.良好及其以上的比例之和超過40%的學(xué)校為先進(jìn)校.各等級(jí)學(xué)生人數(shù)占該校學(xué)生總?cè)藬?shù)的比例如下表:

比例 學(xué)校

等級(jí)

學(xué)校A

學(xué)校B

學(xué)校C

學(xué)校D

學(xué)校E

學(xué)校F

學(xué)校G

學(xué)校H

優(yōu)秀

8%

3%

2%

9%

1%

22%

2%

3%

良好

37%

50%

23%

30%

45%

46%

37%

35%

及格

22%

30%

33%

26%

22%

17%

23%

38%

不及格

33%

17%

42%

35%

32%

15%

38%

24%

(1)從8所學(xué)校中隨機(jī)選出一所學(xué)校,求該校為先進(jìn)校的概率;

(2)從8所學(xué)校中隨機(jī)選出兩所學(xué)校,記這兩所學(xué)校中不及格比例低于30%的學(xué)校個(gè)數(shù)為X,求X的分布列;

(3)設(shè)8所學(xué)校優(yōu)秀比例的方差為S12,良好及其以下比例之和的方差為S22,比較S12S22的大小.(只寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),g(x)=|xlnxax2|,a.

(1)討論f(x)的單調(diào)性;

(2)若g(x)在區(qū)間(1,e)有極小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是( )

A. 從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;

B. 2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;

C. 2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番 ;

D. 為了預(yù)測(cè)該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為)建立了投資額y與時(shí)間變量t的線性回歸模型,根據(jù)該模型預(yù)測(cè)該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,射線的普通方程為,曲線的參數(shù)方程為為參數(shù)).O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出的極坐標(biāo)方程;

2)設(shè)的交點(diǎn)為P(點(diǎn)P不為極點(diǎn)),的交點(diǎn)為Q,當(dāng)上變化時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義在上的函數(shù),若存在正常數(shù)、,使得對(duì)一切均成立,則稱是“控制增長函數(shù)”,在以下四個(gè)函數(shù)中:①;②;③;④.是“控制增長函數(shù)”的有(

A.②③B.③④C.②③④D.①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案