【題目】在平面直角坐標(biāo)系xOy中,射線的普通方程為,曲線的參數(shù)方程為(為參數(shù)).以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫(xiě)出與的極坐標(biāo)方程;
(2)設(shè)與的交點(diǎn)為P(點(diǎn)P不為極點(diǎn)),與的交點(diǎn)為Q,當(dāng)在上變化時(shí),求的最大值.
【答案】(1):;:;(2)
【解析】
(1)根據(jù)普通方程與參數(shù)方程的互相轉(zhuǎn)化,直角坐標(biāo)方程與極坐標(biāo)方程的互化公式,可以得到與的極坐標(biāo)方程;
(2)聯(lián)立與的方程求得,,再聯(lián)立曲線與的極坐標(biāo)方程求得,,再通過(guò)三角恒等變換就可求得的最大值為.
(1)射線的極坐標(biāo)方程為;
曲線的極坐標(biāo)方程為.
(2)曲線的極坐標(biāo)方程與射線的極坐標(biāo)方程聯(lián)立得,,
即,;曲線與曲線的極坐標(biāo)方程聯(lián)立得,,即,.
所以,
其中的終邊經(jīng)過(guò)點(diǎn),當(dāng)時(shí),
取得最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是拋物線上任意一點(diǎn),,且點(diǎn)為線段的中點(diǎn).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)若為點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn),過(guò)的直線交曲線于、 兩點(diǎn),直線交直線于點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與雙曲線有相同的焦點(diǎn),且橢圓與雙曲線交于一點(diǎn).
(1)求的值;
(2)若雙曲線上一點(diǎn)Q到左焦點(diǎn)的距離為3,求它到雙曲線右準(zhǔn)線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,規(guī)定排放時(shí)污染物的殘留含量不得超過(guò)1%.已知在過(guò)濾過(guò)程中的污染物的殘留數(shù)量P(單位:毫克/升)與過(guò)濾時(shí)間t(單位:小時(shí))之間的函數(shù)關(guān)系為:(為正常數(shù),為原污染物數(shù)量).若前5個(gè)小時(shí)廢氣中的污染物被過(guò)濾掉了90%,那么要能夠按規(guī)定排放廢氣,至少還需要過(guò)濾( )
A. 小時(shí)B. 小時(shí)C. 5小時(shí)D. 小時(shí)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,記
(1)證明:有且僅有一個(gè)零點(diǎn);
(2)記的零點(diǎn)為,,若在內(nèi)有兩個(gè)不等實(shí)根,判斷與的大小,并給出對(duì)應(yīng)的證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:關(guān)于的不等式無(wú)解;命題:指數(shù)函數(shù)是上的增函數(shù).
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若滿(mǎn)足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若存在實(shí)數(shù),使得,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com