設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個(gè)根x1,x2滿足0<x1<x2<.
(1)當(dāng)x∈(0,x1)時(shí),求證:x<f(x)<x1;
(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,求證:x0<.
證明:(1)令F(x)=f(x)-x.因?yàn)閤1,x2是方程f(x)-x=0的根, 所以F(x)=a(x-x1)(x-x2). 當(dāng)a∈(0,x1)時(shí),由x1<x2得(x-x1)(x-x2)>0,又a>0. ∴F(x)=a(x-x1)(x-x2)>0,即x<f(x). 又x1-f(x)=x1-[x+F(x)]=x1-x+a(x1-x)(x-x2)=(x1-x)[1+a(x-x2)]. 因?yàn)?<x<x1<x2<,所以x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0. 所以為x1-f(x)>0,即f(x)<x1. 綜上可得x<f(x)<x1. (2)依題意x0=-. 因?yàn)閤1,x2是方程f(x)-x=0的根,即x1,x2是方程ax2+(b-1)x+c=0的根,所以x1+x2=, x0=-==. 因?yàn)閍x2<1,所以x0<=. 即x0<. 分析:本題主要考查二次函數(shù)、一元二次方程、一元二次不等式、作差法證明不等式以及運(yùn)算推理能力,將二次函數(shù)、一元二次方程以及一元二次不等式等知識有機(jī)地融為一體. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:浙江省杭州高中2006-2007學(xué)年度第一學(xué)期高三年級第三次月考 數(shù)學(xué)試題(文) 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高一版(A必修2) 2009-2010學(xué)年 第26期 總182期 人教課標(biāo)高一版 題型:044
設(shè)二次函數(shù)f(x)=x2+2x+b的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為圓C.
(1)求實(shí)數(shù)b的取值范圍;
(2)求圓C的方程;
(3)問圓C是否經(jīng)過某定點(diǎn)(其坐標(biāo)與b無關(guān))?若是,求出定點(diǎn)的坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆云南省高一下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)(1)設(shè)x、y、zR,且x+y+z=1,求證x2+y2+z2≥;
(2)設(shè)二次函數(shù)f (x)=ax2+bx+c (a>0),方程f (x)-x=0有兩個(gè)實(shí)根x1,x2,
且滿足:0<x1<x2<,若x(0,x1)。
求證:x<f (x)<x1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)當(dāng)x∈(0,x1)時(shí),證明x<f(x)<x1;
(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱;
證明:x0<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)f(x)=x2+ax+a,方程f(x)-x=0的兩根x1和x2滿足0<x1<x2<1.
(1)求實(shí)數(shù)a的取值范圍;
(2)試比較f(0)·f(1)-f(0)與的大小,并說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com