設(shè)二次函數(shù)f(x)=x2+2x+b的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為圓C.

(1)求實(shí)數(shù)b的取值范圍;

(2)求圓C的方程;

(3)問圓C是否經(jīng)過某定點(diǎn)(其坐標(biāo)與b無關(guān))?若是,求出定點(diǎn)的坐標(biāo);若不是,說明理由.

答案:
解析:

  解:(1)令x=0,得拋物線與y軸交點(diǎn)是(0,b).因?yàn)閒(x)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),所以b≠0.令f(x)=x2+2x+b=0,則Δ=4-4b>0,解得b<1.所以b的取值范圍是(-∞,0)∪(0,1).

  (2)設(shè)圓C的方程為x2+y2+Dx+Ey+F=0.令y=0,得x2+Dx+F=0.由題意知,該方程與x2+2x+b=0的根相同,故D=2,F(xiàn)=b.令x=0,得y2+Ey+F=0.由題意知,此方程有一個(gè)根為b,代入得E=-b-1.所以圓C的方程為x2+y2+2x-(b+1)y+b=0.

  (3)將圓C的方程變形為(1-y)b+(x2+y2+2x-y)=0.由于b的任意性,得解得.所以圓C必過定點(diǎn)(0,1)和(-2,1).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:浙江省杭州高中2006-2007學(xué)年度第一學(xué)期高三年級第三次月考 數(shù)學(xué)試題(文) 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

設(shè)二次函數(shù)f(x)=ax2bxc,(ab,cR)滿足下列條件:

①當(dāng)x∈R時(shí),f(x)的最小值為0,且f(x-1)=f(-x-1)成立;

②當(dāng)x∈(0,5)時(shí),xf(x)≤2|x-1|+1恒成立.

(1)

f(1)的值

(2)

f(x)的解析式

(3)

求最大的實(shí)數(shù)t,使得當(dāng)x∈[1,3]時(shí),f(xt)≤x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆云南省高一下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)(1)設(shè)x、y、zR,且xyz=1,求證x2y2z2;

(2)設(shè)二次函數(shù)f (x)=ax2bxca>0),方程f (x)-x=0有兩個(gè)實(shí)根x1,x2,

且滿足:0<x1x2,若x(0,x1)。

求證:xf (x)<x1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2bx+c(a>0),方程f(x)-x=0的兩根x1、x2滿足0<x1x2

(1)當(dāng)x∈(0,x1)時(shí),證明xf(x)<x1

 

(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱;

證明:x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù)f(x)=x2+ax+a,方程f(x)-x=0的兩根x1和x2滿足0<x1<x2<1.

(1)求實(shí)數(shù)a的取值范圍;

(2)試比較f(0)·f(1)-f(0)與的大小,并說明理由

查看答案和解析>>

同步練習(xí)冊答案