設(shè)二次函數(shù)f(x)=ax2bx+c(a>0),方程f(x)-x=0的兩根x1、x2滿足0<x1x2

(1)當(dāng)x∈(0,x1)時(shí),證明xf(x)<x1;

 

(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對(duì)稱(chēng);

證明:x0

解:

(1)令F(x)=f(x)-x,由x1、x2是方程f(x)-x=0的兩根,有F(x)=a(xx1)(xx2

 

當(dāng)x∈(0,x1)時(shí),由x1x2,及a>0,有F(x)=a(xx1)(xx2)>0,?

 

即F(x)=f(x)-x>0,f(x)>x.?

 

x1f(x)=x1-[x+F(x)]=x1xaxx1)(xx2)=(x1x)[1+axx2)]

因?yàn)?<xx1x2

 

所以x1x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0

 

x1f(x),所以xf(x)<x1;?

 

(2)依題意x0=-,因x1x2f(x)-x=0的根,即x1、x2是方程ax2+(b-1)x+c=0的根.

所以x1x2=-,

 

x0=-Equation.3

 

因?yàn)?I>ax2<1,即ax2-1<0,故x0

 

評(píng)述:此題考查一元二次方程、二次函數(shù)和不等式的基礎(chǔ)知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力.考查證明不等式的方法.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:浙江省杭州高中2006-2007學(xué)年度第一學(xué)期高三年級(jí)第三次月考 數(shù)學(xué)試題(文) 題型:044

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

設(shè)二次函數(shù)f(x)=ax2bxc,(a,b,cR)滿足下列條件:

①當(dāng)x∈R時(shí),f(x)的最小值為0,且f(x-1)=f(-x-1)成立;

②當(dāng)x∈(0,5)時(shí),xf(x)≤2|x-1|+1恒成立.

(1)

f(1)的值

(2)

f(x)的解析式

(3)

求最大的實(shí)數(shù)t,使得當(dāng)x∈[1,3]時(shí),f(xt)≤x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高一版(A必修2) 2009-2010學(xué)年 第26期 總182期 人教課標(biāo)高一版 題型:044

設(shè)二次函數(shù)f(x)=x2+2x+b的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為圓C.

(1)求實(shí)數(shù)b的取值范圍;

(2)求圓C的方程;

(3)問(wèn)圓C是否經(jīng)過(guò)某定點(diǎn)(其坐標(biāo)與b無(wú)關(guān))?若是,求出定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆云南省高一下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)(1)設(shè)xy、zR,且xyz=1,求證x2y2z2;

(2)設(shè)二次函數(shù)f (x)=ax2bxca>0),方程f (x)-x=0有兩個(gè)實(shí)根x1,x2,

且滿足:0<x1x2,若x(0,x1)。

求證:xf (x)<x1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次函數(shù)f(x)=x2+ax+a,方程f(x)-x=0的兩根x1和x2滿足0<x1<x2<1.

(1)求實(shí)數(shù)a的取值范圍;

(2)試比較f(0)·f(1)-f(0)與的大小,并說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案