14.已知直線ax-y+3=0與圓x2+y2+2x-8=0相交于A,B兩點(diǎn),點(diǎn)P(x0,y0)在直線2x-y=0上,且|PA|=|PB|,則x0的取值范圍為(-1,0)∪(0,2).

分析 由題意可得CP垂直平分AB,且 y0=2x0.由$\frac{2{x}_{0}-0}{{x}_{0}+1}$•a=-1,解得x0=$\frac{-1}{2a+1}$,把直線y=ax+3代入圓x2+y2+2x-8=0化為關(guān)于x的一元二次方程,由△>0,求得a的范圍,從而可得x0的取值范圍.

解答 解:圓x2+y2+2x-8=0 即 (x+1)2+y2=9,表示以C(-1,0)為圓心,半徑等于3的圓.
∵|PA|=|PB|,∴CP垂直平分AB,
∵P(x0,y0)在直線y=2x上,∴y0=2x0
又CP的斜率等于$\frac{2{x}_{0}-0}{{x}_{0}+1}$,∴$\frac{2{x}_{0}-0}{{x}_{0}+1}$•a=-1,解得x0=$\frac{-1}{2a+1}$.
把直線y=ax+3代入圓x2+y2+2x-8=0可得,(a2+1)x2+(6a+2)x+1=0.
由△=(6a+2)2-4(a2+1)>0,求得 a>0,或a<-$\frac{3}{4}$.
∴-1<$\frac{-1}{2a+1}$<0,或 0<$\frac{-1}{2a+1}$<2.
故x0的取值范圍為 (-1,0)∪(0,2),
故答案為:(-1,0)∪(0,2).

點(diǎn)評(píng) 本題主要考查直線和圓相交的性質(zhì),不等式的性質(zhì)應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=$\frac{sinθ}{3}$x3+$\frac{\sqrt{3}cosθ}{2}$x2+tanθ,其中θ∈[0,$\frac{π}{2}$],則導(dǎo)數(shù)f′(1)的取值范圍是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)x∈R,且2x2+y2=2,求x$\sqrt{1+{y}^{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=1+$\frac{4}{x}$,g(x)=log2x.
(1)設(shè)函數(shù)h(x)=g(x)-f(x),求函數(shù)h(x)在區(qū)間[2,4]上的值域;
(2)定義min{p,q}表示p,q中較小者,設(shè)函數(shù)H(x)=min{f(x),g(x)}(x>0).
①求函數(shù)H(x)的單調(diào)區(qū)間及最值;
②若關(guān)于x的方程H(x)=k有兩個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的是( 。
A.f(x)=3-xB.f(x)=|x|+1C.f(x)=log${\;}_{\frac{1}{2}}$(x2+1)D.f(x)=$\frac{1}{\sqrt{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.32x-3x+1=0的解是x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.方程1gx+1g(x-1)=1-1g5的根是x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)定義于實(shí)數(shù)集上,當(dāng)x>0時(shí),f(x)>1,且對(duì)于任意實(shí)數(shù)x,y,有f(x+y)=f(x)•f(y),求證:f(x)在R上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知log5[log3(log2x)]=0,那么x${\;}^{-\frac{1}{2}}$等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2\sqrt{3}}$C.$\frac{1}{2\sqrt{2}}$D.$\frac{1}{3\sqrt{3}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案