已知橢圓
與雙曲線
有相同的焦點,則橢圓的離心率為
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
設
橢圓方程為
拋物線方程為
如圖4所示,過點
作
軸的平行線,與拋物線在第一象限的交點為
G.已知拋物線在點
G的切線經(jīng)過橢圓的右焦點
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設
A,
B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點
P,使得
為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標) 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)已知焦點在
軸上,離心率為
的橢圓的一個頂點是拋物線
的焦點,過橢圓右焦點
的直線
交橢圓于
兩點,交
軸于點
,且
,(1)求橢圓方程;(2)證明:
為定值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知動點
到定點
的距離與點
到定直線
:
的距離之比為
.
(1)求動點
的軌跡
的方程;
(2)設
、
是直線
上的兩個點,點
與點
關于原點
對稱,若
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共12分)已知橢圓E:
的焦點坐
標為
(
),點M(
,
)在橢圓E上
(1)求橢圓E的方程;(2)O為坐標原點,⊙
的任意一條切線與橢圓E有兩個交點
,
且
,求⊙
的半徑。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(1)P, Q中點M的軌跡方程;
(2)
的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程為__________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線型拱橋,當水面距拱頂8
m時,水面寬24
m,若雨后水面上漲2
m,則此時的水面寬約為(以下數(shù)據(jù)供參考:
≈1.7,
≈1.4)( )
A.20.4m | B.10.2 m | C.12.8 m | D.6.4 m |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過
的焦點
作直線交拋物線與
兩點,若
與
的長分別是
,則
( )
查看答案和解析>>