已知橢圓與雙曲線有相同的焦點,則橢圓的離心率為
A.B.C.D.
由題意得:所以,
所以
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
橢圓方程為拋物線方程為如圖4所示,過點軸的平行線,與拋物線在第一象限的交點為G.已知拋物線在點G的切線經(jīng)過橢圓的右焦點
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標) 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知焦點在軸上,離心率為的橢圓的一個頂點是拋物線的焦點,過橢圓右焦點的直線交橢圓于兩點,交軸于點,且,(1)求橢圓方程;(2)證明:為定值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點到定點的距離與點到定直線的距離之比為
(1)求動點的軌跡的方程;
(2)設、是直線上的兩個點,點與點關于原點對稱,若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)已知橢圓E:的焦點坐標為),點M(,)在橢圓E上(1)求橢圓E的方程;(2)O為坐標原點,⊙的任意一條切線與橢圓E有兩個交點,,求⊙的半徑。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



(1)P,  Q中點M的軌跡方程;
(2)的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程為__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線型拱橋,當水面距拱頂8 m時,水面寬24 m,若雨后水面上漲2 m,則此時的水面寬約為(以下數(shù)據(jù)供參考:≈1.7,≈1.4)(  )
A.20.4mB.10.2 mC.12.8 mD.6.4 m

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

查看答案和解析>>

同步練習冊答案