(1)P,  Q中點M的軌跡方程;
(2)的最小值。

(1)(2)
(1)如圖,設(shè)M(x,y),

,,
,

∴點M的軌跡方程為(在∠AOB內(nèi)部的部分)。
(2)∵
,∴
等號成立當(dāng)且僅當(dāng),即時,。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量,動點到定直線的距離等于,并且滿足,其中為坐標(biāo)原點,為非負(fù)實數(shù).
(1)求動點的軌跡方程
(2)若將曲線向左平移一個單位,得曲線,試判斷曲線為何種類型;
(3)若(2)中曲線為圓錐曲線,其離心率滿足,當(dāng)是曲線的兩個焦點時,則圓錐曲線上恒存在點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩定點,動點滿足。
(1)  求動點的軌跡方程;
(2)  設(shè)點的軌跡為曲線,試求出雙曲線的漸近線與曲線的交點坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,動點滿足.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點作直線與曲線交于兩點,若,求直線的方程;
(Ⅲ)設(shè)為曲線在第一象限內(nèi)的一點,曲線處的切線與軸分別交于點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以O(shè)為原點,所在直線為軸,建立如 所示的坐標(biāo)系。設(shè),點F的坐標(biāo)為,,點G的坐標(biāo)為。
(1)求關(guān)于的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷;
(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當(dāng)取最小值時橢圓的方程;
(3)在(2)的條件下,若點P的坐標(biāo)為,C、D是橢圓上的兩點,且,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,動圓與定圓B:x2+y2-4y-32=0內(nèi)切且過定圓內(nèi)的一個定點A(0,-2),求動圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線與曲線交于不同的兩點,為坐標(biāo)原點.
(Ⅰ)若,求證:曲線是一個圓;
(Ⅱ)若,當(dāng)時,求曲線的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題共13分)
  如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點,直線AB⊥x軸于點C,,動點M到直線AB的距離是它到點D的距離的2倍。
 。↖)求點M的軌跡方程;
 。↖I)設(shè)點K為點M的軌跡與x軸正半軸的交點,直線l交點M的軌跡于E,F(xiàn)兩點(E,F(xiàn)與點K不重合),且滿足,動點P滿足,求直線KP的斜率的取值范圍。
  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點,則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案