【題目】對(duì)任意實(shí)數(shù),給出下列命題:①的充要條件;②是無(wú)理數(shù)是無(wú)理數(shù)的充要條件;③的充分條件;④的必要條件;其中真命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

利用等式與不等式的性質(zhì)逐一驗(yàn)證命題的真假即可

①“,但當(dāng)時(shí),”無(wú)法推出“,的充分不必要條件,故①是假命題;

是無(wú)理數(shù)是無(wú)理數(shù)”,是無(wú)理數(shù)是無(wú)理數(shù)”,是無(wú)理數(shù)是無(wú)理數(shù)的充要條件,故②是真命題;

③當(dāng)時(shí),,即無(wú)法推出”,且當(dāng)時(shí),,即無(wú)法推出”,的既不充分也不必要條件,故③是假命題;

④因?yàn)?/span>,所以的必要條件,故④是真命題;

綜上,真命題有2個(gè),

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知曲線上的點(diǎn)到點(diǎn)的距離比它到直線的距離小2.

1)求曲線的方程;

2)曲線在點(diǎn)處的切線軸交于點(diǎn).直線分別與直線軸交于點(diǎn),以為直徑作圓,過(guò)點(diǎn)作圓的切線,切點(diǎn)為,試探究:當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)(點(diǎn)與原點(diǎn)不重合)時(shí),線段的長(zhǎng)度是否發(fā)生變化?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),等腰梯形,,,、分別是的兩個(gè)三等分點(diǎn).若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn),如圖(2).

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,且滿足

(1)求橢圓的方程;

(2)設(shè)傾斜角為的直線交于,兩點(diǎn),記的面積為,求取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)吃粽子是我國(guó)的傳統(tǒng)習(xí)俗,設(shè)一盤(pán)中裝有10個(gè)粽子,其中豆沙粽子3個(gè),肉粽子2個(gè),白粽子5個(gè),這三種粽子的外觀完全相同,從中任意選取3個(gè).

1)求三種粽子各取到1個(gè)的概率;

2)設(shè)ξ表示取到的豆沙粽子個(gè)數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)

1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

2)是否存在常數(shù),當(dāng)時(shí),的值域?yàn)閰^(qū)間,且區(qū)間的長(zhǎng)度為(視區(qū)間的長(zhǎng)度為),如果存在,求出的值;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),為其右焦點(diǎn),若,設(shè),且,則該橢圓離心率的取值范圍為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率;先由計(jì)算器給出09之間取整數(shù)值的隨機(jī)數(shù),指定01、2表示沒(méi)有擊中目標(biāo),3、4、5、67、8、9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20隨機(jī)數(shù):

根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為(

A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且時(shí),.

)求的值;

)求函數(shù)的值域;

)設(shè)函數(shù)的定義域?yàn)榧?/span>,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案