【題目】心理學家發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學,給所有同學幾何和代數(shù)各一題,讓各位同學自由選擇一道題進行解答.統(tǒng)計情況如下表:(單位:人)

(1)能否據(jù)此判斷有的把握認為視覺和空間能力與性別有關?

(2)經過多次測試發(fā)現(xiàn):女生甲解答一道幾何題所用的時間在5—7分鐘,女生乙解答一道幾何題所用的時間在6—8分鐘,現(xiàn)甲、乙兩人獨立解答同一道幾何題,求乙比甲先解答完的概率;

(3)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對她們的答題情況進行研究,記甲、乙兩名女生被抽到的人數(shù)為,求的分布列及數(shù)學期望.

附表及公式

【答案】(1) 97.5%的把握認為視覺和空間能力與性別有關;(2) 乙比甲先解答完的概率;(3) 的分布列為:

.

【解析】試題分析:(1)由列聯(lián)表,結合公式求出觀測值,再對照概率表,即可得出結論;

(2) 設甲、乙解答一道幾何題的時間分別為分鐘,則基本事件滿足的區(qū)域為,設事件為“乙比甲先做完此道題”,則滿足的區(qū)域為,再由幾何概型的概率公式求解即可;

(3) 由題可知可能取值為0,1,2,求出每一個變量的概率,即可得分布列與期望.

試題解析:

(1)由表中數(shù)據(jù)得的觀測值,

所以根據(jù)統(tǒng)計有97.5%的把握認為視覺和空間能力與性別有關

(2)設甲、乙解答一道幾何題的時間分別為分鐘,

則基本事件滿足的區(qū)域為,

設事件乙比甲先做完此道題”,則滿足的區(qū)域為,

所以由幾何概型,即乙比甲先解答完的概率.

(3)由題可知可能取值為0,1,2,

,

的分布列為:

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在平面多邊形中,四邊形為正方形, ,沿著將圖形折成圖2,其中, 的中點.

(1)求證: ;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x(1)R上的偶函數(shù).

(1)對任意的x[1,2],不等式m·2x1恒成立求實數(shù)m的取值范圍.

(2)g(x)1,設函數(shù)F(x)g(4xn)g(2x13)有零點,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程是為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的直角坐標方程;

(2)設點、分別在上運動,若的最小值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,B1BB1AABBC,∠B1BC=90°,DAC的中點,ABB1D.

(1)求證:平面ABB1A1⊥平面ABC

(2)在線段CC1(不含端點)上,是否存在點E,使得二面角EB1DB的余弦值為-?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內的交點為,且.

(1)求橢圓的方程;

(2)過點的直線交橢圓兩點,當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角三角形中,的中點,是線段上一個動點,且,如圖所示,沿翻折至,使得平面平面

(1)當時,證明:平面;

(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點O,左焦點為F1(-1,0)的橢圓C的左頂點為A,上頂點為B,F1到直線AB的距離為|OB|.

(1)求橢圓C的方程;

(2)如圖,若橢圓,橢圓,則稱橢圓C2是橢圓C1λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點MN,試求弦長|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若函數(shù)上單調遞減,求實數(shù)的取值范圍;

(2)當時,試問方程是否有實數(shù)根?若有,求出所有實數(shù)根;若沒有,請說明理由.

查看答案和解析>>

同步練習冊答案