【題目】已知函數(shù)圖象的一個對稱中心,圖象的一條對稱軸,且上單調(diào),則符合條件的值之和為________.

【答案】

【解析】

先由對稱中心和對稱軸求出的所有值,再結(jié)合上單調(diào),確定的范圍,從而求出的可能值,逐個驗證是否滿足條件,即可得出結(jié)論.

由題意可得,,

,,所以,,

又因為上單調(diào),

所以,即,

,所以當時,

因為圖象的一條對稱軸,

所以,,即,

又因為,所以,此時,

易知上單調(diào)遞減,符合條件;

時,,因為圖象的一條對稱軸,

所以,即,,

又因為,所以,此時,

易知單調(diào)遞增,符合條件;

時,,因為圖象的一條對稱軸,

所以,,即,

又因為,所以,此時,

易知上單調(diào)遞減,符合條件.

綜上,符合條件的值之和為.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱長為1的正方體中,為線段的動點,則下列4個命題中正確的有( )個

1 2)平面平面

3的最大值為 4的最小值為

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20197月,中國良渚古城遺址獲準列入世界遺產(chǎn)名錄,標志著中華五千年文明史得到國際社會認可.良渚古城遺址是人類早期城市文明的范例,實證了中華五千年文明史.考古科學家在測定遺址年齡的過程中利用了“放射性物質(zhì)因衰變而減少”這一規(guī)律.已知樣本中碳14的質(zhì)量N隨時間(單位:年)的衰變規(guī)律滿足(表示碳14原有的質(zhì)量),則經(jīng)過5730年后,碳14的質(zhì)量變?yōu)樵瓉淼?/span>______;經(jīng)過測定,良渚古城遺址文物樣本中碳14的質(zhì)量是原來的,據(jù)此推測良渚古城存在的時期距今約在5730年到______年之間.(參考數(shù)據(jù):,,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓P與圓內(nèi)切,且與直線相切,設(shè)動圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)過曲線上一點)作兩條直線,與曲線分別交于不同的兩點,,若直線,的斜率分別為,且.證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,的準線,軸,軸,、交拋物線兩點,交、兩點,已知的面積是2倍,則中點軸的距離的最小值為(

A.B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過橢圓的右焦點,拋物線的焦點為橢圓的上頂點,且交橢圓兩點,點在直線上的射影依次為.

(1)求橢圓的方程;

(2)若直線軸于點,且,當變化時,證明: 為定值;

(3)當變化時,直線是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)同時滿足以下條件:①上為減函數(shù),上是增函數(shù);②是偶函數(shù);③處的切線與直線垂直.

1)求函數(shù)的解析式;

2)設(shè),若對,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點.

1)若為線段上的動點,證明:平面平面;

2)若為線段,上的動點(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從拋物線上任意一點Px軸作垂線段,垂足為Q,點M是線段上的一點,且滿足

(1)求點M的軌跡C的方程;

(2)設(shè)直線與軌跡c交于兩點,TC上異于的任意一點,直線,分別與直線交于兩點,以為直徑的圓是否過x軸上的定點?若過定點,求出符合條件的定點坐標;若不過定點,請說明理由.

查看答案和解析>>

同步練習冊答案