【題目】為了調(diào)查某省高三男生身高情況,現(xiàn)從某校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于157.5cm和187.5cm之間,將測量結(jié)果按如下方式分成6組:第一組,第二組,…,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.
(1)求該學校高三年級男生的平均身高;
(2)利用分層抽樣的方式從這50名男生中抽出20人,求抽出的這20人中,身高在177.5cm以上(含177.5cm)的人數(shù);
(3)從根據(jù)(2)選出的身高在177.5cm以上(含177.5cm)的男生中任意抽取2人,求此二人來自于不同組的概率.
【答案】(1)171.5cm(2)4(3)
【解析】
(1)結(jié)合頻率分布直方圖,求樣本數(shù)據(jù)的平均值即可;
(2)利用分層抽樣的方法,按比例抽取樣本即可;
(3)由古典概型概率的求法,結(jié)合概率公式求解即可.
解:(1)由頻率分布直方圖可得:該學校高三年級男生的平均身高為
即該學校高三年級男生的平均身高為171.5cm;
(2)由頻率分布直方圖可知身高在177.5cm以上(含177.5cm)的概率為,
則利用分層抽樣的方式從這50名男生中抽出20人,則抽出的這20人中,身高在177.5cm以上(含177.5cm)的人數(shù)為人;
(3)由(2)可知,所抽取的4人中,2人,2人,
不妨設(shè)的2人編號為A,B, 的2人編號為1,2,
則從4人中抽取2人共有, ,,,,共6種不同取法,
二人來自于不同組共有, ,,共4種不同取法,
即二人來自于不同組的概率為,
故二人來自于不同組的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有兩個車間生產(chǎn)同一種產(chǎn)品,第一車間有工人200人,第二車間有工人400人,為比較兩個車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對他們中每位工人生產(chǎn)完成一件產(chǎn)品的時間(單位:min)分別進行統(tǒng)計,得到下列統(tǒng)計圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數(shù) |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計 | 20 |
第一車間樣本頻數(shù)分布表
(Ⅰ)分別估計兩個車間工人中,生產(chǎn)一件產(chǎn)品時間小于75min的人數(shù);
(Ⅱ)分別估計兩車間工人生產(chǎn)時間的平均值,并推測哪個車間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(Ⅲ)從第一車間被統(tǒng)計的生產(chǎn)時間小于75min的工人中隨機抽取2人,求抽取的2人中,至少1人生產(chǎn)時間小于65min的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取200件作為樣本,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得到如下的頻率分布直方圖:
(1)求直方圖中的值;
(2)由頻率分布直方圖可認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,試計算這批產(chǎn)品中質(zhì)量指標值落在上的件數(shù);
(3)設(shè)產(chǎn)品的生產(chǎn)成本為,質(zhì)量指標值為,生產(chǎn)成本與質(zhì)量指標值滿足函數(shù)關(guān)系式,假設(shè)同組中的每個數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的右端點代替,試計算生產(chǎn)該食品的平均成本.參考數(shù)據(jù):若,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是橢圓的左右焦點.
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點, ,求點的坐標.
(Ⅱ)若直線與圓相切,交橢圓于兩點,是否存在這樣的直線,使得?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,一個焦點為.
(1)求橢圓的方程;
(2)若直線與軸交于點,與橢圓交于兩點,線段的垂直平分線與軸交于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年12月28日,成雅鐵路開通運營,使川西多個市縣進入動車時代,融入全國高鐵網(wǎng),這對推動沿線經(jīng)濟社會協(xié)調(diào)健康發(fā)展具有重要意義.在試運行期間,鐵道部門計劃在成都和雅安兩城之間開通高速列車,假設(shè)每天7:00-8:00,8:00-9:00兩個時間段內(nèi)各發(fā)一趟列車由雅安到成都(兩車發(fā)車情況互不影響),雅安發(fā)車時間及其概率如下表所示:
第一趟列車 | 第二趟列車 | |||||
發(fā)車時間 | 7:10 | 7:30 | 7:50 | 8:10 | 8:30 | 8:50 |
概率 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 |
若小王、小李二人打算乘動車從雅安到成都游玩,假設(shè)他們到達雅安火車站候車的時間分別是周六7:00和7:20(只考慮候車時間,不考慮其它因素).
(1)求小王候車10分鐘且小李候車30分鐘的概率;
(2)設(shè)小李候車所需時間為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在側(cè)棱垂直于底面的三棱柱中,,,為側(cè)面的對角線的交點,,分別是,中點
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com