【題目】如圖所示的幾何體中,垂直于梯形所在的平面,的中點(diǎn),,四邊形為矩形,線段于點(diǎn).

(1)求證:平面;

(2)求二面角的正弦值;

(3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)見(jiàn)解析(2)(3)在線段上存在一點(diǎn)滿足題意,且

【解析】

(1)由題意結(jié)合線面平行的判定定理即可證得題中的結(jié)論;

(2)建立空間直角坐標(biāo)系,利用兩個(gè)半平面的法向量可得二面角的余弦值,然后利用同角三角函數(shù)基本關(guān)系可得二面角的正弦值;

(3)假設(shè)點(diǎn)Q存在,利用直線的方向向量和平面的法向量計(jì)算可得點(diǎn)Q的存在性和位置.

1)因?yàn)樗倪呅?/span>為矩形,所以的中點(diǎn).連接,

中,分別為的中點(diǎn),所以,

因?yàn)?/span>平面,平面

所以平面.

2)易知兩兩垂直,如圖以為原點(diǎn),分別以所在直線為軸,建立空間直角坐標(biāo)系.

,所以.

設(shè)平面的法向量為

解得

,得

所以平面的一個(gè)法向量為.

設(shè)平面的法向量為

,據(jù)此可得 ,

則平面的一個(gè)法向量為,

,于是.

故二面角的正弦值為.

3)設(shè)存在點(diǎn)滿足條件.

,

設(shè),整理得

.

因?yàn)橹本與平面所成角的大小為,

所以

解得,

,即點(diǎn)重合.

故在線段上存在一點(diǎn),且.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材中指出:當(dāng)很小,不太大時(shí),可以用表示的近似值,即 1),我們把近似值與實(shí)際值之差除以實(shí)際值的商的絕對(duì)值稱為相對(duì)近似誤差,一般用字母表示,即相對(duì)近似誤差

1)利用(1)求出的近似值,并指出其相對(duì)近似誤差(相對(duì)近似誤差保留兩位有效數(shù)字)

2)若利用(1)式計(jì)算的近似值產(chǎn)生的相對(duì)近似誤差不超過(guò),求正實(shí)數(shù)的取值范圍;

3)若利用(1)式計(jì)算的近似值產(chǎn)生的相對(duì)近似誤差不超過(guò),求正整數(shù)的最大值。(參考對(duì)數(shù)數(shù)值:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問(wèn)中有如下問(wèn)題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人.”其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開(kāi)始每天派出的人數(shù)比前一天多7人.”在該問(wèn)題中的1864人全部派遣到位需要的天數(shù)為( )

A. 9B. 16C. 18D. 20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開(kāi)線”,曲線軸有兩個(gè)焦點(diǎn),且經(jīng)過(guò)點(diǎn)

(1)的值;

(2)設(shè)為曲線上的動(dòng)點(diǎn),求的最小值;

(3)過(guò)且斜率為的直線羽毛球形線相交于點(diǎn)三點(diǎn),問(wèn)是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)整數(shù)數(shù)列{an}共有2n)項(xiàng),滿足,,且).

(1)當(dāng)時(shí),寫出滿足條件的數(shù)列的個(gè)數(shù);

(2)當(dāng)時(shí),求滿足條件的數(shù)列的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲袋中裝有3個(gè)白球和5個(gè)黑球,乙袋中裝有4個(gè)白球和6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后,再?gòu)囊掖须S機(jī)取出一個(gè)球放回甲袋中,則甲袋中白球沒(méi)有減少的概率為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在定義域內(nèi)存在實(shí)數(shù)x,滿足,則稱為“局部奇函數(shù)”.

已知函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;

設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍;

為定義域R上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)圖形中,正方體棱上的四個(gè)中點(diǎn)共面的圖形是( ).

A.甲與乙B.乙與丙C.丙與丁D.丁與甲

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì) n N ,設(shè)拋物線 y2 2(2n 1) x ,過(guò) P 2n, 0 任作直線 l 與拋物線交與 An, Bn兩點(diǎn),則數(shù)列的前 n 項(xiàng)和為_____;

查看答案和解析>>

同步練習(xí)冊(cè)答案