【題目】已知,.
(1)若,判斷函數(shù)在的單調性;
(2)證明: ,;
(3)設 ,對,,有恒成立,求的最小值.
【答案】(1)在單調遞增(2)見解析(3)2
【解析】
(1)計算導函數(shù),結合導函數(shù)與原函數(shù)單調性關系,即可.(2)利用,得到 ,采用裂項相消法,求和,即可.(3)計算導函數(shù),構造新函數(shù),判斷最小值,構造函數(shù),計算范圍,得到k的最小值,即可。
解:(1).
又,因此,而,
所以,故在單調遞增.
(2)由(1)可知時,,
即,
設,則
因此
即
.
即結論成立.
(3)由題意知,
,
設,
則,
由于,故,
時,單調遞增,又,,
因此在存在唯一零點,使,即,
且當,,,單調遞減;
,,,單調遞增;
故 ,
故
,
設
,又設
故在上單調遞增,因此,
即,在單調遞增,
,
又,
所以,
故所求的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調性;
(2)若對任意,不等式恒成立,求實數(shù)的取值范圍;
(3)設,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓柱底面半徑為1,高為,是圓柱的一個軸截面,動點從點出發(fā)沿著圓柱的側面到達點,其距離最短時在側面留下的曲線如圖所示.將軸截面繞著軸逆時針旋轉后,邊與曲線相交于點.
(1)求曲線的長度;
(2)當時,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】疫情期間,有一批貨物需要用汽車從城市甲運至城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響.據(jù)調查統(tǒng)計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表:
所用時間 | 10 | 11 | 12 | 13 |
通過公路1的頻數(shù) | 20 | 40 | 20 | 20 |
通過公路2的頻數(shù) | 10 | 40 | 40 | 10 |
(1)為進行某項研究,從所用時間為12的60輛汽車中隨機抽取6輛,若用分層隨機抽樣的方法抽取,求從通過公路1和公路2的汽車中各抽取幾輛:
(2)若從(1)的條件下抽取的6輛汽車中,再任意抽取2輛汽車,求這2輛汽車至少有1輛通過公路1的概率;
(3)假設汽車A只能在約定時間的前11h出發(fā),汽車B只能在約定時間的前12h出發(fā).為了盡最大可能在各自允許的時間內將貨物從城市甲運到城市乙,汽車A和汽車B應如何選擇各自的道路?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直. ,,.
(1)求證:;
(2)求證:平面平面;
(3)線段上是否存在點,使平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(文)(2017·衡水二模)某商場在元旦舉行購物抽獎促銷活動,規(guī)定顧客從裝有編號0,1,2,3,4的五個相同小球的抽獎箱中一次任意摸出兩個小球,若取出的兩個小球的編號之和等于7則中一等獎,等于6或5則中二等獎,等于4則中三等獎,其余結果為不中獎.
(1)求中二等獎的概率.
(2)求不中獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰中,斜邊,為直角邊上的一點,將沿直線折疊至的位置,使得點在平面外,且點在平面上的射影在線段上設,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com