【題目】如圖,在三棱柱中, 底面, , , , 是棱上一點.

I)求證:

II)若, 分別是 的中點,求證: 平面

III)若二面角的大小為,求線段的長.

【答案】1)見解析(2)見解析(3

【解析】試題分析:(1先證明可得;(2)連接于點,根據(jù)幾何知識可得可得,根據(jù)線面平行的判定定理可得平面;(3)建立空間直角坐標系,利用向量,通過計算求的長。

試題解析:I平面

, ,

中, ,

,

,

II)連接于點

∵四邊形是平行四邊形,

的中點.

又∵, 分別是 的中點,

,且,

∴四邊形是平行四邊形,

平面

平面

III,且平面,

, , 兩兩垂直。

為原點, , , 分別為軸, 軸, 軸建立空間直角坐標系

,則 , ,

, ,

設平面的法向量為,

, ,

則有,令,

又平面的法向量為

∵二面角的大小為,

,

解得,

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,橢圓的左、右焦點分別為 也是拋物線的焦點,點在第一象限的交點,且.

(1)求的方程;

(2)平面上的點滿足,直線,且與交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,其中是實數(shù).

1解關于的不等式

2)若求關于的方程實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在中,角的對邊分別是,且有.

1)求;

(2)若面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 過圓上任意一點軸引垂線垂足為(點可重合),點的中點.

(1)求的軌跡方程;

(2)若點的軌跡方程為曲線,不過原點的直線與曲線交于兩點,滿足直線 , 的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,直線過拋物線焦點,且與拋物線交于, 兩點,以線段為直徑的圓與拋物線準線的位置關系是( )

A. 相離 B. 相交 C. 相切 D. 不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知動直線與橢圓相交于兩點.

①若線段中點的橫坐標為,求斜率的值;

②已知點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求過點的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 ,直線過定點.

(Ⅰ)若與圓相切,求的方程;

(Ⅱ)若與圓相交于、兩點,求的面積的最大值,并求此時直線的方程.(其中點是圓的圓心)

查看答案和解析>>

同步練習冊答案