【題目】在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,E、F分別為棱AA1、BB1的中點(diǎn),G為棱A1B1上的一點(diǎn),且A1G=λ(0≤λ≤1),則點(diǎn)G到平面D1EF的距離為(

A.
B.
C.
D.

【答案】D
【解析】解:因?yàn)锳1B1∥EF,G在A1B1上,所以G到平面D1EF的距離即是A1到面D1EF的距離,
即是A1到D1E的距離,D1E= ,由三角形面積可得所求距離為
故選:D
【考點(diǎn)精析】利用空間點(diǎn)、線、面的位置和空間點(diǎn)、線、面的位置對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi);過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面;如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(兩個(gè)平面的交線);(平行線的傳遞性)平行與同一直線的兩條直線互相平行;如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi);過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面;如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(兩個(gè)平面的交線);(平行線的傳遞性)平行與同一直線的兩條直線互相平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在直角坐標(biāo)系 中,圓錐曲線 的參數(shù)方程為 為參數(shù)),定點(diǎn) 是圓錐曲線 的左、右焦點(diǎn).
(1)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過(guò)點(diǎn) 且平行于直線 的直線 的極坐標(biāo)方程;
(2)設(shè)(1)中直線 與圓錐曲線 交于 兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),設(shè)a=f(log47),b=f(log23),c=f(0.20.6),則a,b,c的大小關(guān)系是(
A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線 為參數(shù)), 為參數(shù)).
(1)化 的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)若 上的點(diǎn) 對(duì)應(yīng)的參數(shù)為 上的動(dòng)點(diǎn),求 中點(diǎn) 到直線 為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】批次的種燈泡個(gè),對(duì)其命進(jìn)行追蹤調(diào)查,將結(jié)果列頻率分布表如下,根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個(gè)級(jí),其中大于或等于的燈泡優(yōu)等品,小于的燈泡次品,余的燈泡是正.

(天)

頻數(shù)

頻率

合計(jì)

(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出的值;

(2)某人從這個(gè)燈泡中隨機(jī)地購(gòu)買了個(gè),求此燈泡恰好不是次品的概率;

(3)某人從這批燈泡中隨機(jī)地購(gòu)買了個(gè),如果這個(gè)燈泡的等級(jí)情況恰好與按三個(gè)等級(jí)分層抽樣所得的結(jié)果相同,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1, 在直角梯形中, , , , 為線段的中點(diǎn). 沿折起,使平面 平面,得到幾何體,如圖2所示.

1)求證: 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某校舉行歌唱比賽時(shí),七位評(píng)委為某位選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)依次為(

A.87,86
B.83,85
C.88,85
D.82,86

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是兩個(gè)等差數(shù)列,記 ,

其中表示個(gè)數(shù)中最大的數(shù).

(Ⅰ)若 ,求的值,并證明是等差數(shù)列;

(Ⅱ)證明:或者對(duì)任意正數(shù),存在正整數(shù),當(dāng)時(shí), ;或者存在正整數(shù),使得是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,1),則函數(shù)f(2x+1)的定義域?yàn)?/span>

查看答案和解析>>

同步練習(xí)冊(cè)答案